Matched neurofeedback during fMRI differentially activates reward-related circuits in active and sham groups

J Neuroimaging. 2021 Sep;31(5):947-955. doi: 10.1111/jon.12899. Epub 2021 Jun 8.

Abstract

Background and purpose: Functional MRI neurofeedback (fMRI-nf) leverages the brain's ability to self-regulate its own activity. However, self-regulation processes engaged during fMRI-nf are incompletely understood. Here, we used matched feedback in an fMRI-nf experimental protocol to investigate whether brain processes recognize true neurofeedback signals.

Methods: We implemented an existing fMRI-nf protocol to train lateralized motor activity using a finger-tap task in conjunction with real-time feedback. Twelve healthy, right-handed, adult participants were assigned into age- and sex-matched active and sham study groups. Matched participant pairs received the same visual feedback, based on brain activity of the participant from the active group. We compared group-averaged activation maps before, during, and after neurofeedback, and analyzed changes in lateralized motor activity due to neurofeedback.

Results: Active and sham groups demonstrated different brain activation to the same feedback during neurofeedback. In particular, there was higher activation in visual cortex, secondary somatosensory cortex, and right inferior frontal gyrus in the active group compared to the sham group. Conversely, sham participants demonstrated higher activation in anterior cingulate cortex, left frontal pole, and posterior superior temporal gyrus. Despite differing brain activations during neurofeedback, neither group demonstrated significant improvement in lateralized motor activity from pre to postfeedback scan in the same session. We also observed no significant difference between pre and postfeedback activation maps, suggesting that no significant finger-tap related functional reorganization had occurred.

Conclusions: These findings suggest that fMRI neurofeedback paradigms that monitor or incorporate activity from regions reported here would provide enhanced efficacy for research investigation and clinical intervention.

Keywords: fMRI; matched; neurofeedback; real-time; reward.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / diagnostic imaging
  • Brain Mapping
  • Humans
  • Magnetic Resonance Imaging
  • Neurofeedback*
  • Reward