Spatial proximity and prey vibratory cues influence collective hunting in social spiders

Isr J Ecol Evol. 2020 Dec;66(1-2):26-31. doi: 10.1163/22244662-20191062. Epub 2020 Dec 19.

Abstract

Social spiders are thought to predominantly receive information about their environment through vibrational cues. Thus, group living introduces the challenge of distinguishing useful vibrational information from the background noise of nestmates. Here we investigate whether spatial proximity between colony-mates may allow social spiders (Stegodyphus dumicola) to reduce background noise that might obstruct vibrational information from prey. To do so, we constructed experimental colonies and measured whether the number of spiders in proximity to one another whilst resting could predict the number of spiders that participated in prey capture. Additionally, we exposed spider colonies to five different simulated vibrational cues mimicking prey to determine which cue types spiders were most responsive to. We found that the number of spiders huddled together prior to foraging trials was positively correlated with the number of spiders participating in collective foraging. Furthermore, colonies responded more quickly to pulsed vibrational cues over other types of vibrational patterns. Together these data reveal that both social interactions and prey cues shape how social sit-and-wait predators experience and respond to their environment.

Keywords: collective action; communication; foraging; seismic cues; sociality; spiders.