Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul:145:110429.
doi: 10.1016/j.foodres.2021.110429. Epub 2021 May 20.

Transcriptome analysis reveals the mechanism associated with dynamic changes in fatty acid and phytosterol content in foxtail millet (Setaria italica) during seed development

Affiliations

Transcriptome analysis reveals the mechanism associated with dynamic changes in fatty acid and phytosterol content in foxtail millet (Setaria italica) during seed development

Yuhao Yuan et al. Food Res Int. 2021 Jul.

Abstract

Foxtail millet (Setaria italica) is an excellent source of beneficial natural fatty acids and phytosterols. However, the mechanisms underlying the dynamic changes of fatty acids and phytosterols during seed development are unknown. In this study, a comprehensive dynamic change analysis of the bioactive compounds during seed development was conducted in two cultivars with different crude fat content (high-fat, JG 35 [5.40%]; and low-fat, JG 39 [2.90%]). GC-FID/MS analysis showed that the proportion of unsaturated fatty acids (UFAs) were higher than the saturated fatty acids (SFAs). UFA content first increased, then decreased during seed development, while SFA content showed the opposite trend. Oil contents continuously increased with seed development, especially at the S2 stage. Phytosterol contents initially increased, then decreased with seed development. Transcriptome analysis revealed that 152 genes were associated with fatty acid metabolism and phytosterol biosynthesis, of which 46 and 62 were related to UFA and phytosterol biosynthesis, respectively. Furthermore, the key genes involved in fatty acid synthesis (ACCase and FATA/B), triacylglycerol biosynthesis (LACS, GPAT, and DGAT), and phytosterols synthesis (CAS1, STM1, EGR6, and DWF1) were overexpressed. This led to maximum UFA, oil, and phytosterol accumulation in JG 35 at the S2 stage. This study reveals the mechanism behind the dynamic changes of fatty acid and phytosterol contents in foxtail millet during seed development.

Keywords: Fatty acids; Foxtail millet; Phytosterols; Seed development; Transcriptome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources