Central amygdala circuitry modulates nociceptive processing through differential hierarchical interaction with affective network dynamics

Commun Biol. 2021 Jun 14;4(1):732. doi: 10.1038/s42003-021-02262-3.


The central amygdala (CE) emerges as a critical node for affective processing. However, how CE local circuitry interacts with brain wide affective states is yet uncharted. Using basic nociception as proxy, we find that gene expression suggests diverging roles of the two major CE neuronal populations, protein kinase C δ-expressing (PKCδ+) and somatostatin-expressing (SST+) cells. Optogenetic (o)fMRI demonstrates that PKCδ+/SST+ circuits engage specific separable functional subnetworks to modulate global brain dynamics by a differential bottom-up vs. top-down hierarchical mesoscale mechanism. This diverging modulation impacts on nocifensive behavior and may underly CE control of affective processing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Affect / physiology*
  • Amygdala / cytology
  • Amygdala / physiology*
  • Animals
  • Magnetic Resonance Imaging
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Nerve Net / physiology*
  • Nociception / physiology*
  • Optogenetics / methods
  • Protein Kinase C-delta / metabolism
  • Protein Kinase C-delta / physiology
  • Somatostatin / metabolism
  • Somatostatin / physiology


  • Somatostatin
  • Protein Kinase C-delta