Higher-order organization of biomolecular condensates
- PMID: 34129784
- PMCID: PMC8205532
- DOI: 10.1098/rsob.210137
Higher-order organization of biomolecular condensates
Abstract
A guiding principle of biology is that biochemical reactions must be organized in space and time. One way this spatio-temporal organization is achieved is through liquid-liquid phase separation (LLPS), which generates biomolecular condensates. These condensates are dynamic and reactive, and often contain a complex mixture of proteins and nucleic acids. In this review, we discuss how underlying physical and chemical processes generate internal condensate architectures. We then outline the diverse condensate architectures that are observed in biological systems. Finally, we discuss how specific condensate organization is critical for specific biological functions.
Keywords: biomolecular condensate; liquid–liquid phase separation; membraneless organelle.
Figures
Similar articles
-
Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.J Mol Biol. 2022 Jan 15;434(1):167348. doi: 10.1016/j.jmb.2021.167348. Epub 2021 Nov 9. J Mol Biol. 2022. PMID: 34767801 Free PMC article. Review.
-
Using quantitative reconstitution to investigate multicomponent condensates.RNA. 2022 Jan;28(1):27-35. doi: 10.1261/rna.079008.121. Epub 2021 Nov 12. RNA. 2022. PMID: 34772789 Free PMC article. Review.
-
What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?RNA. 2022 Jan;28(1):36-47. doi: 10.1261/rna.079026.121. Epub 2021 Nov 12. RNA. 2022. PMID: 34772786 Free PMC article. Review.
-
Capillary forces generated by biomolecular condensates.Nature. 2022 Sep;609(7926):255-264. doi: 10.1038/s41586-022-05138-6. Epub 2022 Sep 7. Nature. 2022. PMID: 36071192 Review.
-
A call to order: Examining structured domains in biomolecular condensates.J Magn Reson. 2023 Jan;346:107318. doi: 10.1016/j.jmr.2022.107318. J Magn Reson. 2023. PMID: 36657879 Free PMC article.
Cited by
-
Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.Nat Chem. 2024 Feb 21. doi: 10.1038/s41557-024-01456-6. Online ahead of print. Nat Chem. 2024. PMID: 38383656
-
Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions.Chem Rev. 2024 Feb 28;124(4):1899-1949. doi: 10.1021/acs.chemrev.3c00622. Epub 2024 Feb 8. Chem Rev. 2024. PMID: 38331392 Free PMC article. Review.
-
Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription.bioRxiv [Preprint]. 2024 Jan 2:2024.01.01.573828. doi: 10.1101/2024.01.01.573828. bioRxiv. 2024. PMID: 38260389 Free PMC article. Preprint.
-
An allele-selective inter-chromosomal protein bridge supports monogenic antigen expression in the African trypanosome.Nat Commun. 2023 Dec 11;14(1):8200. doi: 10.1038/s41467-023-44043-y. Nat Commun. 2023. PMID: 38081826 Free PMC article.
-
Spontaneous Transition of Spherical Coacervate to Vesicle-Like Compartment.Adv Sci (Weinh). 2024 Feb;11(7):e2305978. doi: 10.1002/advs.202305978. Epub 2023 Dec 8. Adv Sci (Weinh). 2024. PMID: 38063842 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
