The risk of psychiatric and neurological disorders is significantly higher in patients with diabetes mellitus. Diabetic patients are more susceptible to depression, anxiety and memory impairment as compared with non-diabetic individuals. Metformin, a biguanide used for the management of type 2 diabetes mellitus (T2DM), promotes neurogenesis, enhances spatial memory function and protects the brain against oxidative imbalance beyond its effect on glucose metabolism. However, the exact mechanism of its neuropharmacological actions in T2DM is not known. We investigated the role of the agmatinergic system in neuropharmacological actions of metformin in diabetic mice. Diabetes was induced by the streptozotocin (STZ) injection and confirmed by high blood glucose levels. After 28 days, STZ treated mice exhibited memory impairment in radial arm maze, depression-like behavior in forced swim test and anxiety-like behavior in elevated plus maze along with increased expression of pro-inflammatory cytokines like TNF-α, IL-1β, IL-6, IL-10 also, reduced agmatine and BDNF levels in the hippocampus and prefrontal cortex compared to the control animals. Metformin and agmatine alone or in combination, by once-daily administration during 14-27 day of the protocol significantly reversed the STZ induced high blood glucose levels, memory impairment, depression and anxiety-like behaviors. It also reduced neuro-inflammatory markers and increased agmatine and BDNF levels in the hippocampus and prefrontal cortex. The present study suggests the importance of endogenous agmatine in the neuropharmacological action of metformin in diabetic mice. The data projects agmatine and metformin combination as a potential therapeutic strategy for diabetes associated memory impairment, depression, anxiety, and other comorbidities.
Keywords: Agmatine; Anxiety; Depression; Diabetes mellitus; Memory; Metformin.
Copyright © 2021 Elsevier B.V. All rights reserved.