Constructing Co-N-C Catalyst via a Double Crosslinking Hydrogel Strategy for Enhanced Oxygen Reduction Catalysis in Fuel Cells

Small. 2021 Jul;17(29):e2100735. doi: 10.1002/smll.202100735. Epub 2021 Jun 17.

Abstract

Exploiting platinum-group-metal (PGM)-free electrocatalysts with remarkable activity and stability toward oxygen reduction reaction (ORR) is of significant importance to the large-scale commercialization of proton exchange membrane fuel cells (PEMFCs). Here, a high-performance and anti-Fenton reaction cobalt-nitrogen-carbon (Co-N-C) catalyst is reported via employing double crosslinking (DC) hydrogel strategy, which consists of the chemical crosslinking between acrylic acid (AA) and acrylamide (AM) copolymerization and metal coordinated crosslinking between Co2+ and P(AA-AM) copolymer. The resultant DC hydrogel can benefit the Co2+ dispersion via chelated Co-N/O bonds and relieve metal agglomeration during the subsequent pyrolysis, resulting in the atomically dispersed Co-Nx/C active sites. By optimizing the ratio of AA/AM, the optimal P(AA-AM)(5-1)-Co-N catalyst exhibits a high content of nitrogen doping (12.36 at%) and specific surface area (1397 m2 g-1 ), significantly larger than that of the PAA-Co-N catalyst (10.59 at%/746 m2 g-1 ) derived from single crosslinking (SC) hydrogel. The electrochemical measurements reveal that P(AA-AM)(5-1)-Co-N possesses enhanced ORR activity (half-wave potential (E1/2 ) ≈0.820 V versus the reversible hydrogen electrode (RHE)) and stability (≈4 mV shift in E1/2 after 5000 potential cycles in 0.5 m H2 SO4 at 60 ºC) relative to PAA-Co-N, which is higher than most Co-N-C catalysts reported so far.

Keywords: Co-N-C catalysts; anti-Fenton reaction; oxygen reduction reaction; proton exchange membrane fuel cells; stability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon*
  • Catalysis
  • Electrodes
  • Hydrogels*
  • Oxygen

Substances

  • Hydrogels
  • Carbon
  • Oxygen