Characterisation of a potential probiotic strain Paracoccus marcusii KGP and its application in whey bioremediation

Folia Microbiol (Praha). 2021 Oct;66(5):819-830. doi: 10.1007/s12223-021-00886-w. Epub 2021 Jun 19.

Abstract

Whey, the main by-product obtained from the manufacture of cheese, which contains a very high organic load (mainly due to the lactose content), is not easily degradable and creates concern over environmental issues. Hydrolysis of lactose present in whey and conversion of whey lactose into valuable products such as bioethanol, sweet syrup, and animal feed offers the possibility of whey bioremediation. The increasing need for bioremediation in the dairy industry has compelled researchers to search for a novel source of β-galactosidase with diverse properties. In the present study, the bacterium Paracoccus marcusii KGP producing β-galactosidase was subjected to morphological, biochemical, and probiotic characterisation. The bacterial isolate was found to be non-pathogenic and resistant to low pH (3 and 4), bile salts (0.2%), salt (10%), pepsin (at pH 3), and pancreatin (at pH 8). Further characterisation revealed that the bacteria have a good auto-aggregation ability (40% at 24 h), higher hydrophobicity (chloroform-60%, xylene-50%, and ethyl acetate-40%) and a broad spectrum of antibiotic susceptibility. The highest growth of P. marcusii KGP was achieved at pH 7 and 28 °C, and the yeast extract, galactose, and MgSO4 were the best for the growth of the bacterial cells. The bacterium KGP was able to utilise whey as a substrate for its growth with good β-galactosidase production potential. Furthermore, the β-galactosidase extracted from the isolate KGP could hydrolyse 47% whey lactose efficiently at 50 °C. The study thus reveals the potential application of β-galactosidase from P. marcusii KGP in whey bioremediation.

MeSH terms

  • Animals
  • Biodegradation, Environmental
  • Dairying
  • Industrial Waste*
  • Paracoccus* / metabolism
  • Probiotics* / metabolism
  • Whey* / microbiology

Substances

  • Industrial Waste

Supplementary concepts

  • Paracoccus marcusii