Comparing the performance of the conventional and fixed-bed membrane bioreactors for treating municipal wastewater

J Environ Health Sci Eng. 2021 Apr 24;19(1):997-1004. doi: 10.1007/s40201-021-00664-3. eCollection 2021 Jun.

Abstract

Membrane bioreactor (MBR) is relatively a new technology in wastewater treatment. It can efficiently remove soluble and suspended organics. However, it may constantly encounter bio-fouling and cannot efficiently remove nutrient pollutants. These two deficiencies have motivated researchers to upgrade the design and operation of conventional MBR (CMBR). This study evaluates the performance of hybrid fixed bed MBR (FBMBR) treating real domestic wastewater in different operational conditions. It also compares the experimental results of FBMBR with the CMBR. For this purpose, two identical reactors are constructed as CMBR and FBMBR. Each module contains the net volume of 140 L and is operated continuously in two aerobic (DO > 4 mg/L) and anoxic (DO < 1 mg/L) conditions with average organic loading rates (OLRs) of 0.58, 0.71 and 1.55 kgCOD/m3d. The pore sizes of flat sheet membranes are 0.2-0.8 μm with total surface area of 1.4m2 per module. The experimental results revealed that the removal efficiencies of BOD, COD and TSS are above 95 % in both CMBR and FBMBR in all operating conditions. However, fouling occurs with lower rates in FBMBR. The growing rate of transmembrane pressure (TMP) in aerobic condition is 1.7mBar/day in CMBR, while it reduces to 1.2mBar/day for FBMBR in solid retention time (SRT) of 75 days and OLR of 0.58 and 0.71 kgCOD/m3d. In anoxic condition with SRT of 100 days and OLR of 1.55 kgCOD/m3d, the TMP in FBMBR is 59 % of CMBR. In addition, total nitrogen (TN) removal is between 12 % (aerobic) and 27 % (anoxic) in CMBR, while it is between 25 % (aerobic) and 49 % (anoxic) in FBMBR. Total phosphorous (TP) removal also ranges between 50 and 66 % in CMBR, while it is between 51 and 86 % in FBMBR. Consequently, using hybrid systems of FBMBR can reduce membrane fouling rate and improve nutrient removal efficiency in comparison with CMBR. This approach can reinforce the biological treatment efficiency and preserve permeate quality in higher OLRs or in lower DO level.

Keywords: Biofilm; Fouling; Hybrid; Membrane bioreactor (MBR); Wastewater treatment.