Water quality evaluation and non-cariogenic risk assessment of exposure to nitrate in groundwater resources of Kamyaran, Iran: spatial distribution, Monte-Carlo simulation, and sensitivity analysis

J Environ Health Sci Eng. 2021 May 26;19(1):1117-1131. doi: 10.1007/s40201-021-00678-x. eCollection 2021 Jun.


Water is exceptionally vital for all living beings and socio-economic development. This study aimed to investigate the groundwater suitability for drinking in rural areas of Kamyaran city, Kurdistan province, Iran, by using the water quality index (WQI) and evaluating the non-carcinogenic health risk caused by nitrate from the drinking route. Forty-five groundwater samples were collected (2019) from operated dug-wells, and twelve parameters (TDS, pH, TH, EC, HCO3 -, K+, Na+, Mg2+, Ca2+, Cl-, SO4 2-, and NO3 -) were measured to the calculation of WQI. Hazard Quotient (HQ) and sensitivity analysis (SA) using the Monte-Carlo Simulation technique with 10,000 iterations were employed to determine the non-carcinogenic effects of Nitrate in different exposed groups (Infant, children, teenagers, and adults). The results of WQI showed that 74% of groundwater samples fall within the excellent water quality class, and 26% of rural areas fall in the category of good water type. The nitrate concentration in drinking water ranged from 22.42 ± 11.44 mg/L. The HQ mean for infants, children, teenagers, and adults were 0.5606, 0.7288, 0.5606, and 0.438, respectively. Probability estimation showed the HQ values for the 5th, and 95th percentile in infants, children, teenagers, and adult groups were (0.25-1.81), (0.13-1.08), (0.13-0.97), and (0.07-0.51), respectively. The SA showed that the most significant parameter of non-carcinogenic risk in all exposed populations was nitrate concentration. Generally, nitrate concentration in the study area was relatively high, and remarkably in agriculture and fertilizer management required more attention.

Keywords: Health risk assessment; Kamyaran; Monte-Carlo simulation; Nitrate; Sensitivity analysis; Water quality index.