Ethinylestradiol administration selectively alters liver sinusoidal membrane lipid fluidity and protein composition

Biochemistry. 1988 May 31;27(11):3939-46. doi: 10.1021/bi00411a008.


Administration of high-dose ethinylestradiol to rats decreases bile flow, Na,K-ATPase specific activity, and liver plasma membrane fluidity. By use of highly purified sinusoidal and bile canalicular membrane fractions, the effect of ethinylestradiol administration on the protein and lipid composition and fluidity of plasma membrane fractions was examined. In sinusoidal fractions, ethinylestradiol (EE) administration decreased Na,K-ATPase activity (32%) and increased activities of alkaline phosphatase (254%), Mg2+-ATPase (155%), and a 160-kDa polypeptide (10-fold). Steady-state and dynamic fluorescence polarization was used to study membrane lipid structure. Steady-state polarization of diphenylhexatriene (DPH) was significantly higher in canalicular compared to sinusoidal membrane fractions. Ethinylestradiol (5 mg/kg per day for 5 days) selectively increased sinusoidal polarization values. Similar changes were demonstrated with the probes 2- and 12-anthroyloxystearate. Time-resolved fluorescence polarization measurements indicated that EE administration for 5 days did not change DPH lifetime but increased the order component (r infinity) and decreased the rotation rate (R). However, 1 and 3 days after EE administration and with low doses (10-100 micrograms/kg per day for 5 days) the Na,K-ATPase, bile flow, and order component were altered, but the rotation rate was unchanged. Vesicles prepared from total sinusoidal membrane lipids of EE-treated rats, as well as phospholipid vesicles, demonstrated increased DPH polarization, as did intact plasma membrane fractions. Liver plasma membrane fractions showed no change in free cholesterol or cholesterol/phospholipid molar ratio, while esterified cholesterol content was increased with high-dose but not low-dose ethinylestradiol.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Membrane / drug effects
  • Electrophoresis, Polyacrylamide Gel
  • Ethinyl Estradiol / pharmacology*
  • Liver / drug effects*
  • Liver / metabolism
  • Male
  • Membrane Fluidity / drug effects*
  • Membrane Lipids / metabolism*
  • Membrane Proteins / metabolism*
  • Rats
  • Rats, Inbred Strains
  • Spectrometry, Fluorescence


  • Membrane Lipids
  • Membrane Proteins
  • Ethinyl Estradiol