LncRNA Quantification from Extracellular Vesicles Isolated from Blood Plasma or Conditioned Media

Methods Mol Biol. 2021;2348:285-304. doi: 10.1007/978-1-0716-1581-2_20.

Abstract

During the last years, the study of extracellular vesicles (EVs) and its cargo has gained interest in the scientific media. EVs have been found in all biofluids and it is postulated that all cells are capable to secrete a wide variety of these vesicles, which play a key role in different cell-to-cell communication processes as well as in the microenvironment modulation. In the EV cargo, DNA, protein, and RNA molecules can be found, including long noncoding RNAs (lncRNAs). Several authors consider the study of EV lncRNAs an ideal source of biomarkers due to the easy sampling of EVs in different biofluids and the high specificity of the lncRNA expression pattern.In the present chapter, a detailed explanation of the EV isolation workflow followed by RNA isolation and lncRNA gene expression study is provided for two sample sources: blood plasma and cell culture conditioned media. EVs from both plasma samples and cell cultured media are isolated using sequential ultracentrifugation method (UC), which has been reported as one of the best methods available to date in terms of purity. UC is followed by RNA extraction based on the combination of phenol/guanidine-based lysis of samples with silica-membrane-based purification of total RNA. LncRNA quantification is performed by qRT-PCR. This chapter includes detailed discussion on lncRNA quantification using hydrolysis probes, recommended housekeeping genes and evaluation of methods for comparing lncRNA levels between EVs and its parental cells. In summary, we describe here the main steps for a successful isolation of the EVs-lncRNA cargo, paying attention to how overcome the different challenges found in the experimental procedure and in the data analysis of lncRNA expression from this source.

Keywords: Biofluids; Conditioned media; Exosomes; Extracellular vesicles; Liquid Biopsy; Plasma; lncRNA.