Contribution of Extrahepatic Aldehyde Oxidase Activity to Human Clearance

Drug Metab Dispos. 2021 Sep;49(9):743-749. doi: 10.1124/dmd.120.000313. Epub 2021 Jun 23.

Abstract

Aldehyde oxidase (AOX) is a soluble, cytosolic enzyme that metabolizes various N-heterocyclic compounds and organic aldehydes. It has wide tissue distribution with highest levels found in liver, kidney, and lung. Human clearance projections of AOX substrates by in vitro assessments in isolated liver fractions (cytosol, S9) and even hepatocytes have been largely underpredictive of clinical outcomes. Various hypotheses have been suggested as to why this is the case. One explanation is that extrahepatic AOX expression contributes measurably to AOX clearance and is at least partially responsible for the often observed underpredictions. Although AOX expression has been confirmed in several extrahepatic tissues, activities therein and potential contribution to overall human clearance have not been thoroughly studied. In this work, the AOX enzyme activity using the S9 fractions of select extrahepatic human tissues (kidney, lung, vasculature, and intestine) were measured using carbazeran as a probe substrate. Measured activities were scaled to a whole-body clearance using best-available parameters and compared with liver S9 fractions. Here, the combined scaled AOX clearance obtained from the kidney, lung, vasculature, and intestine is very low and amounted to <1% of liver. This work suggests that AOX metabolism from extrahepatic sources plays little role in the underprediction of activity in human. One of the notable outcomes of this work has been the first direct demonstration of AOX activity in human vasculature. SIGNIFICANCE STATEMENT: This work demonstrates aldehyde oxidase (AOX) activity is measurable in a variety of extrahepatic human tissues, including vasculature, yet activities and potential contributions to human clearance are relatively low and insignificant when compared with the liver. Additionally, the modeling of the tissue-specific in vitro kinetic data suggests that AOX may be influenced by the tissue it resides in and thus show different affinity, activity, and modified activity over time.

MeSH terms

  • Aldehyde Oxidase / metabolism*
  • Aldehydes / metabolism
  • Blood Vessels / enzymology*
  • Correlation of Data
  • Enzyme Assays / methods
  • Heterocyclic Compounds / metabolism
  • Humans
  • Intestines / enzymology*
  • Kidney / enzymology*
  • Liver / enzymology
  • Lung / enzymology*
  • Metabolic Clearance Rate
  • Tissue Distribution / physiology

Substances

  • Aldehydes
  • Heterocyclic Compounds
  • Aldehyde Oxidase