Kinetic resolution of racemic allylic alcohols via iridium-catalyzed asymmetric hydrogenation: scope, synthetic applications and insight into the origin of selectivity
- PMID: 34163958
- PMCID: PMC8179068
- DOI: 10.1039/d0sc05276k
Kinetic resolution of racemic allylic alcohols via iridium-catalyzed asymmetric hydrogenation: scope, synthetic applications and insight into the origin of selectivity
Abstract
Asymmetric hydrogenation is one of the most commonly used tools in organic synthesis, whereas, kinetic resolution via asymmetric hydrogenation is less developed. Herein, we describe the first iridium catalyzed kinetic resolution of a wide range of trisubstituted secondary and tertiary allylic alcohols. Large selectivity factors were observed in most cases (s up to 211), providing the unreacted starting materials in good yield with high levels of enantiopurity (ee up to >99%). The utility of this method is highlighted in the enantioselective formal synthesis of some bioactive natural products including pumiliotoxin A, inthomycin A and B. DFT studies and a selectivity model concerning the origin of selectivity are presented.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
Similar articles
-
Iridium-catalyzed enantioselective alkynylation and kinetic resolution of alkyl allylic alcohols.Chem Sci. 2022 Nov 1;13(46):13914-13921. doi: 10.1039/d2sc04892b. eCollection 2022 Nov 30. Chem Sci. 2022. PMID: 36544735 Free PMC article.
-
Asymmetric hydrogenation of exocyclic γ,δ-unsaturated β-ketoesters to functionalized chiral allylic alcohols via dynamic kinetic resolution.Chem Sci. 2021 Apr 29;12(22):7793-7799. doi: 10.1039/d1sc02044g. Chem Sci. 2021. PMID: 34168833 Free PMC article.
-
Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.Acc Chem Res. 2017 Oct 17;50(10):2539-2555. doi: 10.1021/acs.accounts.7b00300. Epub 2017 Sep 22. Acc Chem Res. 2017. PMID: 28937739
-
Asymmetric Hydrogenation of Racemic Allylic Alcohols via an Isomerization-Dynamic Kinetic Resolution Cascade.J Org Chem. 2022 Mar 4;87(5):3804-3809. doi: 10.1021/acs.joc.1c02916. Epub 2022 Jan 18. J Org Chem. 2022. PMID: 35041421
-
Highly selective palladium catalyzed kinetic resolution and enantioselective substitution of racemic allylic carbonates with sulfur nucleophiles: asymmetric synthesis of allylic sulfides, allylic sulfones, and allylic alcohols.Chemistry. 2003 Sep 5;9(17):4202-21. doi: 10.1002/chem.200204657. Chemistry. 2003. PMID: 12953206
Cited by
-
The Implications of the Brønsted Acidic Properties of Crabtree-Type Catalysts in the Asymmetric Hydrogenation of Olefins.J Am Chem Soc. 2022 Sep 14;144(36):16252-16261. doi: 10.1021/jacs.2c07023. Epub 2022 Aug 31. J Am Chem Soc. 2022. PMID: 36044252 Free PMC article. Review.
-
Site- and Enantioselective Iridium-Catalyzed Desymmetric Mono-Hydrogenation of 1,4-Dienes.Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19428-19434. doi: 10.1002/anie.202107267. Epub 2021 Jul 20. Angew Chem Int Ed Engl. 2021. PMID: 34137493 Free PMC article.
-
Iridium-Catalyzed Double Convergent 1,3-Rearrangement/Hydrogenation of Allylic Alcohols.J Am Chem Soc. 2023 Jan 11;145(1):626-633. doi: 10.1021/jacs.2c11289. Epub 2022 Dec 19. J Am Chem Soc. 2023. PMID: 36534479 Free PMC article.
-
Iridium-catalyzed enantioselective alkynylation and kinetic resolution of alkyl allylic alcohols.Chem Sci. 2022 Nov 1;13(46):13914-13921. doi: 10.1039/d2sc04892b. eCollection 2022 Nov 30. Chem Sci. 2022. PMID: 36544735 Free PMC article.
References
-
-
For recent reviews, see:
- Skucas E. Ngai M.-Y. Komanduri V. Krische M. J. Acc. Chem. Res. 2007;40:1394. doi: 10.1021/ar7001123. - DOI - PubMed
- Jiang H. Holub N. Anker Jørgensen K. Proc. Natl. Acad. Sci. U. S. A. 2010;107:20630. doi: 10.1073/pnas.0914523107. - DOI - PMC - PubMed
- Lumbroso A. Cooke M. L. Breit B. Angew. Chem., Int. Ed. 2013;52:1890. doi: 10.1002/anie.201204579. - DOI - PubMed
-
-
-
For reviews, see:
- Ayad T. Phansavath P. Ratovelomanana-Vidal V. Chem. Rec. 2016;16:2754. doi: 10.1002/tcr.201600100. - DOI - PubMed
- Cui X. Burgess K. Chem. Rev. 2005;105:3272. doi: 10.1021/cr0500131. - DOI - PubMed
- Margarita C. Andersson P. G. J. Am. Chem. Soc. 2017;139:1346. doi: 10.1021/jacs.6b10690. - DOI - PubMed
- Verendel J. J. Pàmies O. Diéguez M. Andersson P. G. Chem. Rev. 2014;114:2130. doi: 10.1021/cr400037u. - DOI - PubMed
- Tang W. Zhang X. Chem. Rev. 2003;103:3029. doi: 10.1021/cr020049i. - DOI - PubMed
- Xie J.-H. Zhu S.-F. Zhou Q.-L. Chem. Rev. 2011;111:1713. doi: 10.1021/cr100218m. - DOI - PubMed
- Roseblade S. J. Pfaltz A. Acc. Chem. Res. 2007;40:1402. doi: 10.1021/ar700113g. - DOI - PubMed
-
-
-
For a review, see
- Heravi M. M. Lashaki T. B. Poorahmad N. Tetrahedron: Asymmetry. 2015;26:405. doi: 10.1016/j.tetasy.2015.03.006. - DOI
-
. For some recent synthetic examples, see:
- Li H. Shen S.-J. Zhu C.-L. Xu H. J. Am. Chem. Soc. 2018;140:10619. doi: 10.1021/jacs.8b06900. - DOI - PMC - PubMed
- Katsumi D. Nakasone K. Terayama N. Yasui E. Mizukami M. Miyashita M. Nagumo S. J. Org. Chem. 2019;84:1553. doi: 10.1021/acs.joc.8b03006. - DOI - PubMed
- Jeanne-Julien L. Masson G. Astier E. Genta-Jouve G. Servajean V. Beau J.-M. Norsikian S. Roulland E. Org. Lett. 2017;19:4006. doi: 10.1021/acs.orglett.7b01744. - DOI - PubMed
- Kanto M. Sasaki M. Org. Lett. 2016;18:112. doi: 10.1021/acs.orglett.5b03346. - DOI - PubMed
- Seetharamsingh B. Rajamohanan P. R. Reddy D. S. Org. Lett. 2015;17:1652. doi: 10.1021/acs.orglett.5b00345. - DOI - PubMed
- Tang S. Deng Y.-L. Li J. Wang W.-X. Ding G.-L. Wang M.-W. Xiao Z.-P. Wang Y.-C. Sheng R.-L. J. Org. Chem. 2015;80:12599. doi: 10.1021/acs.joc.5b01803. - DOI - PubMed
- Wang Y.-G. Takeyama R. Kobayashi Y. Angew. Chem., Int. Ed. 2006;45:3320. doi: 10.1002/anie.200600458. - DOI - PubMed
-
-
- Ruble J. C. Latham H. A. Fu G. C. J. Am. Chem. Soc. 1997;119:1492. doi: 10.1021/ja963835b. - DOI
- Vedejs E. Chen X. J. Am. Chem. Soc. 1996;118:1809. doi: 10.1021/ja953631f. - DOI
- Bellemin-Laponnaz S. Tweddell J. Ruble J. C. Breitling F. M. Fu G. C. Chem. Commun. 2000;12:1009. doi: 10.1039/B002041I. - DOI
LinkOut - more resources
Full Text Sources
