Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. CVDs have a complex etiology due to the several factors underlying its development including environment, lifestyle, and genetics. Given the role of calcium signal transduction in several CVDs, we investigated via PCR-restriction fragment length polymorphism (RFLP) the single nucleotide polymorphism (SNP) rs7214723 within the calcium/calmodulin-dependent kinase kinase 1 (CAMKK1) gene coding for the Ca2+/calmodulin-dependent protein kinase kinase I. The variant rs7214723 causes E375G substitution within the kinase domain of CAMKK1. A cross-sectional study was conducted on 300 cardiac patients. RFLP-PCR technique was applied, and statistical analysis was performed to evaluate genotypic and allelic frequencies and to identify an association between SNP and risk of developing specific CVD. Genotype and allele frequencies for rs7214723 were statistically different between cardiopathic and several European reference populations. A logistic regression analysis adjusted for gender, age, diabetes, hypertension, BMI and previous history of malignancy was applied on cardiopathic genotypic data and no association was found between rs7214723 polymorphism and risk of developing specific coronary artery disease (CAD) and aortic stenosis (AS). These results suggest the potential role of rs7214723 in CVD susceptibility as a possible genetic biomarker.
Keywords: Cardiovascular diseases; calcium signaling pathway; genetic variants; single nucleotide polymorphism.
© 2021 The Author(s).