Influence of a 24 h fast on high intensity cycle exercise performance in man

Eur J Appl Physiol Occup Physiol. 1988;57(6):653-9. doi: 10.1007/BF01075984.

Abstract

The influence of a 24 h fast on endurance performance and the metabolic response to maximal cycle exercise was investigated in 6 healthy men (mean +/- SD: age = 27 +/- 7 years; weight = 73 +/- 10 kg; VO2max = 46 +/- 10 ml.kg-1.min-1). Subjects performed in randomised order two exercise bouts to exhaustion separated by one week. Test rides were performed in fasted (F) and post-absorptive (normal-diet, ND) conditions on an electrically braked cycle ergometer at a workload equivalent to 100% of VO2max. Acid-base status and selected metabolites were measured on arterialised venous blood at rest prior to exercise and at intervals for 15 mins following exercise. Exercise time to exhaustion was shorter after F compared with ND (p less than 0.01). Pre-exercise blood bicarbonate (HCO3-) concentration, PCO2 and base excess (BE) were lower after F compared with ND (p less than 0.05). Prior to exercise, circulating concentrations of free fatty acids (FFA), beta-hydroxybutyrate (B-HB) and glycerol were higher after F compared with ND (p less than 0.01) but blood glucose and lactate concentration were not different. On the F treatment, after exercise, blood pH, HCO3-, and BE were all significantly higher (p less than 0.01) than on ND; blood lactate concentration was significantly lower for the whole of the post-exercise period after F compared with ND (p less than 0.01). Circulating levels of FFA and B-HB after exercise on the F treatment fell but levels of these substrates were not altered by exercise after ND.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Clinical Trial
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acid-Base Equilibrium
  • Adult
  • Bicycling
  • Blood Glucose / analysis
  • Blood Volume
  • Fasting*
  • Humans
  • Male
  • Physical Endurance
  • Physical Exertion*
  • Time Factors

Substances

  • Blood Glucose