Mimicking partial to total placental insufficiency in a rabbit model of cerebral palsy

J Neurosci Res. 2022 Dec;100(12):2138-2153. doi: 10.1002/jnr.24901. Epub 2021 Jun 25.

Abstract

All placental abruptions begin as partial abruptions, which sometimes manifest as fetal bradycardia. The progression from partial to total abruption was mimicked by a new rabbit model of placental insufficiency, and we compared it, with sufficient statistical power, with the previous model mimicking total placental abruption. The previous model uses total uterine ischemia at E22 or E25 (70% or 79% term, respectively), in pregnant New Zealand white rabbits for 40 min (Full H-I). The new model, Partial+Full H-I, added a 30-min partial ischemia before the 40-min total ischemia. Fetuses were delivered either at E31.5 (full term) vaginally for neurobehavior testing, or by C-section at E25 for ex vivo brain cell viability evaluation. The onset of fetal bradycardia was within the first 2 min of either H-I protocol. There was no difference between Full H-I (n = 442 for E22, 312 for E25) and Partial+Full H-I (n = 154 and 80) groups in death or severely affected kits at E22 (76% vs. 79%) or at E25 (66% vs. 64%), or normal kits at E22 or E25, or any of the individual newborn neurobehavioral tests at any age. No sex differences were found. Partial+Full H-I (n = 6) showed less cell viability than Full H-I (n = 8) at 72-hr ex vivo in the brain regions studied. Partial+Full H-I insult produced similar cerebral palsy phenotype as our previous Full H-I model in a sufficiently powered study and may be more suitable for testing of potential neuroprotectants.

Keywords: fetus; hypoxia; infant; newborn; placental abruption.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bradycardia
  • Cerebral Palsy*
  • Female
  • Humans
  • Hypoxia-Ischemia, Brain*
  • Neuroprotective Agents*
  • Placenta
  • Placental Insufficiency*
  • Pregnancy
  • Rabbits

Substances

  • Neuroprotective Agents