A general theory of avian migratory connectivity

Ecol Lett. 2021 Sep;24(9):1848-1858. doi: 10.1111/ele.13817. Epub 2021 Jun 25.

Abstract

Birds exhibit a remarkable array of seasonal migrations. Despite much research describing migratory behaviour, the underlying forces driving how a species' breeding and wintering populations redistribute each year, that is, migratory connectivity, remain largely unknown. Here, we test the hypothesis that birds migrate in a way that minimises energy expenditure while considering intraspecific competition for energy acquisition, by developing a modelling framework that simulates an optimal redistribution of individuals between breeding and wintering areas. Using 25 species across the Americas, we find that the model accurately predicts empirical migration patterns, and thus offers a general explanation for migratory connectivity based on first ecological and energetic principles. Our model provides a strong basis for exploring additional processes underlying the ecology and evolution of migration, but also a framework for predicting how migration impacts local adaptation across seasons and how environmental change may affect population dynamics in migratory species.

Keywords: Migratory connectivity; cost of migration; eBird; genoscape; ideal free distribution; optimal migration.

Publication types

  • Letter

MeSH terms

  • Adaptation, Physiological
  • Animal Migration*
  • Animals
  • Birds*
  • Humans
  • Population Dynamics
  • Seasons