Non-energy mechanism of phosphocreatine on the protection of cell survival

Biomed Pharmacother. 2021 Sep:141:111839. doi: 10.1016/j.biopha.2021.111839. Epub 2021 Jun 24.


If mitochondrial energy availability or oxidative metabolism is altered, patients will suffer from insufficient energy supply Phosphocreatine (PCr) not only acts as an energy carrier, but also acts as an antioxidant and defensive agent to maintain the integrity and stability of the membrane, to maintain ATP homeostasis through regulating mitochondrial respiration. Meanwhile, PCr can enhance calcium balance and reduce morphological pathological changes, ultimately, PCr helps to reduce apoptosis. On the other aspect, the activities of ATP synthase and MitCK play a crucial role in the maintenance of cellular energy metabolic function. It is interesting to note, PCr not only rises the activities of ATP synthase as well as MitCK, but also promotes these two enzymatic reactions. Additionally, PCr can also inhibit mitochondrial permeability transition in a concentration-dependent manner, prevent ROS and CytC from spilling into the cytoplasm, thereby inhibit the release of proapoptotic factors caspase-3 and caspase-9, and eventually, effectively prevent LPS-induced apoptosis of cells. Understandably, PCr prevents the apoptosis caused by abnormal mitochondrial energy metabolism and has a protective role in a non-energy manner. Moreover, recent studies have shown that PCr protects cell survival through PI3K/Akt/eNOS, MAPK pathway, and inhibition of Ang II-induced NF-κB activation. Furthermore, PCr antagonizes oxidative stress through the activation of PI3K/Akt/GSK3b intracellular pathway, PI3K/AKT-PGC1α signaling pathway, while through the promotion of SIRT3 expression to maintain normal cell metabolism. Interestingly, PCr results in delaying the time to enter pathological metabolism through the delayed activation of AMPK pathway, which is different from previous studies, now we propose the hypothesis that the "miRNA-JAK2/STAT3 -CypD pathway" may take part in protecting cells from apoptosis, PCr may be further be involved in the dynamic relationship between CypD and STAT3. Furthermore, we believe that PCr and CypD would be the central link to maintain cell survival and maintain cell stability and mitochondrial repair under the mitochondrial dysfunction caused by oxidative stress. This review provides the modern progress knowledge and views on the molecular mechanism and molecular targets of PCr in a non-energy way.

Keywords: Adenosine triphosphate; Apoptosis; Cyclophilin D; Mitochondrial permeability transition pore; Phosphocreatine; Reactive oxygen species.

Publication types

  • Review

MeSH terms

  • Animals
  • Cell Survival / genetics
  • Cell Survival / physiology*
  • Energy Metabolism / physiology
  • Humans
  • Oxidative Stress
  • Phosphocreatine / genetics
  • Phosphocreatine / physiology*
  • Signal Transduction / physiology


  • Phosphocreatine