Sleep in two free-roaming blue wildebeest ( Connochaetes taurinus), with observations on the agreement of polysomnographic and actigraphic techniques

IBRO Neurosci Rep. 2021 Feb 17;10:142-152. doi: 10.1016/j.ibneur.2021.02.005. eCollection 2021 Jun.


Most studies examining sleep in mammals are done under controlled conditions in laboratory/zoological facilities with few studies being conducted in their natural environment. It is not always possible to record sleep polysomnographically (PSG) from animals in their natural environments, as PSG is invasive, requiring the surgical implantation of electrodes on the surface of the brain. In contrast, actigraphy (ACT) has been shown to be a minimally-invasive method to objectively measure overall sleep times in some mammals, although not revealing specific sleep states. The aim of this study is two-fold, first, to measure sleep polysomnographically in free-roaming blue wildebeest (Connochaetes taurinus) under the most natural conditions possible, and second, to establish the degree of concordance between ACT and PSG recordings undertaken simultaneously in the same individuals. Here we examined sleep in the blue wildebeest, in a naturalistic setting, using both polysomnography (PSG) and actigraphy (ACT). PSG showed that total sleep time (TST) in the blue wildebeest for a 24-h period was 4.53 h (±0.12 h), 4.26 h (±0.11 h) spent in slow wave (non-REM) sleep and 0.28 h (±0.01 h) spent in rapid eye movement (REM) sleep, with 19.47 h (±0.12 h) spent in Wake. ACT showed that the blue wildebeest spent 19.23 h (±0.18 h) Active and 4.77 h (±0.18 h) Inactive. For both animals studied, a fair agreement between the two techniques for sleep scoring was observed, with approximately 45% of corresponding epochs analyzed being scored as both sleep (using PSG) and inactive (using ACT).

Keywords: Actigraphy; Non-REM sleep; Polysomnography; REM sleep; Sleep.