Negative Thermal Expansion Material: Promising for Improving Electrochemical Performance and Safety of Lithium-Ion Batteries

J Phys Chem Lett. 2021 Jul 8;12(26):6134-6142. doi: 10.1021/acs.jpclett.1c01332. Epub 2021 Jun 28.

Abstract

Heat and deformation are responsible for poor performance and safety of batteries, but they cannot always be avoided. To address these two issues, ZrW2O8, a negative thermal expansion (NTE) material, was adopted to modify LiNi0.8Co0.1Mn0.1O2 (NCM811) to decline deformation via in situ absorption of the generated heat. The reversible capacity of NCM811 modified with 5 wt % of ZrW2O8 can remain at 180.6 mAh/g after 100 cycles at 60 °C and 1.0 C current rate, which increases the retention ratio of NCM811 by 14.8%, while the voltage difference between main redox peaks, Rct, strain after cycles, and heat from DSC of NCM811 are reduced about 47.8%, 81.0%, 28.2%, and 76.0%, respectively. According to various analysis results, the side reactions are also suppressed, and the enhancing mechanisms of ZrW2O8 for NCM811 were discussed. A general strategy is developed for the management of deformation using heat to improve performance and safety of batteries.