Competing off-loading mechanisms of meropenem from an l,d-transpeptidase reduce antibiotic effectiveness
- PMID: 34187885
- PMCID: PMC8271661
- DOI: 10.1073/pnas.2008610118
Competing off-loading mechanisms of meropenem from an l,d-transpeptidase reduce antibiotic effectiveness
Abstract
The carbapenem family of β-lactam antibiotics displays a remarkably broad spectrum of bactericidal activity, exemplified by meropenem's phase II clinical trial success in patients with pulmonary tuberculosis, a devastating disease for which β-lactam drugs historically have been notoriously ineffective. The discovery and validation of l,d-transpeptidases (Ldts) as critical drug targets of bacterial cell-wall biosynthesis, which are only potently inhibited by the carbapenem and penem structural classes, gave an enzymological basis for the effectiveness of the first antitubercular β-lactams. Decades of study have delineated mechanisms of β-lactam inhibition of their canonical targets, the penicillin-binding proteins; however, open questions remain regarding the mechanisms of Ldt inhibition that underlie programs in drug design, particularly the optimization of kinetic behavior and potency. We have investigated critical features of mycobacterial Ldt inhibition and demonstrate here that the covalent inhibitor meropenem undergoes both reversible reaction and nonhydrolytic off-loading reactions from the cysteine transpeptidase LdtMt2 through a high-energy thioester adduct. Next-generation carbapenem optimization strategies should minimize adduct loss from unproductive mechanisms of Ldt adducts that reduce effective drug concentration.
Keywords: beta-lactam; beta-lactone; drug mode of action; l,d-transpeptidase; meropenem.
Conflict of interest statement
The authors declare no competing interest.
Figures
Similar articles
-
N-Thio-β-lactams targeting L,D-transpeptidase-2, with activity against drug-resistant strains of Mycobacterium tuberculosis.Cell Chem Biol. 2021 Sep 16;28(9):1321-1332.e5. doi: 10.1016/j.chembiol.2021.03.008. Epub 2021 Apr 6. Cell Chem Biol. 2021. PMID: 33826941
-
Structure and Inhibitor Specificity of L,D-Transpeptidase (LdtMt2) from Mycobacterium tuberculosis and Antibiotic Resistance: Calcium Binding Promotes Dimer Formation.AAPS J. 2018 Mar 9;20(2):44. doi: 10.1208/s12248-018-0193-x. AAPS J. 2018. PMID: 29524047
-
Inactivation of Mycobacterium tuberculosis l,d-transpeptidase LdtMt₁ by carbapenems and cephalosporins.Antimicrob Agents Chemother. 2012 Aug;56(8):4189-95. doi: 10.1128/AAC.00665-12. Epub 2012 May 21. Antimicrob Agents Chemother. 2012. PMID: 22615283 Free PMC article.
-
Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases.Eur J Med Chem. 2020 May 15;194:112262. doi: 10.1016/j.ejmech.2020.112262. Epub 2020 Mar 23. Eur J Med Chem. 2020. PMID: 32248005 Review.
-
Sulopenem: An Intravenous and Oral Penem for the Treatment of Urinary Tract Infections Due to Multidrug-Resistant Bacteria.Drugs. 2022 Apr;82(5):533-557. doi: 10.1007/s40265-022-01688-1. Epub 2022 Mar 16. Drugs. 2022. PMID: 35294769 Review.
Cited by
-
The l,d-Transpeptidase LdtAb from Acinetobacter baumannii Is Poorly Inhibited by Carbapenems and Has a Unique Structural Architecture.ACS Infect Dis. 2022 Sep 9;8(9):1948-1961. doi: 10.1021/acsinfecdis.2c00321. Epub 2022 Aug 16. ACS Infect Dis. 2022. PMID: 35973205 Free PMC article.
-
Measuring Interactions Between Proteins and Small Molecules or Nucleic Acids.Curr Protoc. 2024 Jul;4(7):e1105. doi: 10.1002/cpz1.1105. Curr Protoc. 2024. PMID: 39040024 Review.
-
β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates.RSC Med Chem. 2021 Aug 4;12(10):1623-1639. doi: 10.1039/d1md00200g. eCollection 2021 Oct 20. RSC Med Chem. 2021. PMID: 34778765 Free PMC article. Review.
-
Mycobacterium tuberculosis: Pathogenesis and therapeutic targets.MedComm (2020). 2023 Sep 4;4(5):e353. doi: 10.1002/mco2.353. eCollection 2023 Oct. MedComm (2020). 2023. PMID: 37674971 Free PMC article. Review.
-
Allosteric cooperation in β-lactam binding to a non-classical transpeptidase.Elife. 2022 Apr 27;11:e73055. doi: 10.7554/eLife.73055. Elife. 2022. PMID: 35475970 Free PMC article.
References
-
- Page M. I., The mechanisms of reactions of β-lactam antibiotics. Acc. Chem. Res. 17, 144–151 (1984).
-
- Sauvage E., Kerff F., Terrak M., Ayala J. A., Charlier P., The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234–258 (2008). - PubMed
-
- Wietzerbin J., et al. ., Occurrence of D-alanyl-(D)-meso-diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of Mycobacteria. Biochemistry 13, 3471–3476 (1974). - PubMed
-
- Coyette J., Perkins H. R., Polacheck I., Shockman G. D., Ghuysen J. M., Membrane-bound DD-carboxypeptidase and LD-transpeptidase of Streptococcus faecalis ATCC 9790. Eur. J. Biochem. 44, 459–468 (1974). - PubMed
-
- Mainardi J. L., et al. ., A novel peptidoglycan cross-linking enzyme for a β-lactam-resistant transpeptidation pathway. J. Biol. Chem. 280, 38146–38152 (2005). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
