Interactions of Some Chemotherapeutic Agents as Epirubicin, Gemcitabine and Paclitaxel in Multicomponent Systems Based on Orange Essential Oil

Pharmaceuticals (Basel). 2021 Jun 27;14(7):619. doi: 10.3390/ph14070619.


In order to anticipate the effect induced by a natural product on the chemical activity of medicines simultaneously administered, spontaneous interactions of certain cancer treatment drugs such as, epirubicin (EPR), gemcitabine (GCT), and paclitaxel (PTX) with limonene (LIM)-a natural compound extracted from orange peel and known as an anticancer agent-were investigated. To estimate the stability of the drugs over time, a current density of 50 mA cm-2 was applied as an external stimulus between two platinum electrodes immersed in hydrochloric acid solution containing ethyl alcohol/water in the volume ratio of 2/3, in the absence and presence of orange essential oil (limonene concentration of 95%). The concentration variation of chemotherapeutic agents over time was evaluated by UV-Vis spectrophotometry. Kinetic studies have shown a delay in the decomposition reaction of epirubicin and gemcitabine and a paclitaxel activity stimulation. Thus, in the presence of limonene, the epirubicin half-life increased from 46.2 min to 63 min, and from 6.2 min to 8.6 min in gemcitabine case, while for paclitaxel a decrease of half-life from 35.9 min to 25.8 min was determined. Therefore, certain drug-limonene interactions took place, leading to the emergence of molecular micro-assemblies impacting decomposition reaction of chemotherapeutics. To predict drug-limonene interactions, the Autodock 4.2.6 system was employed. Thus, two hydrophobic interactions and five π-alkyl interactions were established between EPR-LIM, the GCT-LIM connection involves four π-alkyl interactions, and the PTX-LIM bridges take place through three hydrophobic interactions and the one π-alkyl. Finally, the decomposition reaction mechanism of drugs was proposed.

Keywords: Autodock 4.2.6 system; chemotherapeutics; experimental and kinetic studies; interactions; limonene; quantum chemical calculation.