Molecular Perspective of Nanoparticle Mediated Therapeutic Targeting in Breast Cancer: An Odyssey of Endoplasmic Reticulum Unfolded Protein Response (UPRER) and Beyond

Biomedicines. 2021 Jun 2;9(6):635. doi: 10.3390/biomedicines9060635.

Abstract

Breast cancer (BC) is the second most frequent cause of death among women. Representing a complex and heterogeneous type of cancer, its occurrence is attributed by both genetic (gene mutations, e.g., BRCA1, BRCA2) and non-genetic (race, ethnicity, etc.) risk factors. The effectiveness of available treatment regimens (small molecules, cytotoxic agents, and inhibitors) decreased due to their poor penetration across biological barriers, limited targeting, and rapid body clearance along with their effect on normal resident cells of bone marrow, gastrointestinal tract, and hair follicles. This significantly reduced their clinical outcomes, which led to an unprecedented increase in the number of cases worldwide. Nanomedicine, a nano-formulation of therapeutics, emerged as a versatile delivering module for employment in achieving the effective and target specific delivery of pharmaceutical payloads. Adoption of nanotechnological approaches in delivering therapeutic molecules to target cells ensures not only reduced immune response and toxicity, but increases the stability of therapeutic entities in the systemic circulation that averts their degradation and as such increased extravasations and accumulation via enhanced permeation and the retention (EPR) effect in target tissues. Additionally, nanoparticle (NP)-induced ER stress, which enhances apoptosis and autophagy, has been utilized as a combative strategy in the treatment of cancerous cells. As nanoparticles-based avenues have been capitalized to achieve better efficacy of the new genera of therapeutics with enhanced specificity and safety, the present study is aimed at providing the fundamentals of BC, nanotechnological modules (organic, inorganic, and hybrid) employed in delivering different therapeutic molecules, and mechanistic insights of nano-ER stress induced apoptosis and autophagy with a perspective of exploring this avenue for use in the nano-toxicological studies. Furthermore, the current scenario of USA FDA approved nano-formulations and the future perspective of nanotechnological based interventions to overcome the existing challenges are also discussed.

Keywords: ER stress; breast cancer; nanomedicine; nanotechnology; therapeutics.

Publication types

  • Review

Grants and funding