A Peptide Inhibitor of Peroxiredoxin 6 Phospholipase A2 Activity Significantly Protects against Lung Injury in a Mouse Model of Ventilator Induced Lung Injury (VILI)

Antioxidants (Basel). 2021 Jun 7;10(6):925. doi: 10.3390/antiox10060925.

Abstract

Ventilator induced lung injury (VILI) is a lung injury syndrome associated with mechanical ventilation, most frequently for treatment of Acute Lung Injury (ALI), and generally secondary to the use of greater than physiologic tidal volumes. To reproduce this syndrome experimentally, C57Bl/6 mice were intubated and ventilated with low (4 mL/Kg body weight) or high (12 mL/Kg) tidal volume for 6 h. Lung parameters with low volume ventilation were unchanged from non-ventilated (control) mice. High tidal volume ventilation resulted in marked lung injury with increased neutrophils in the bronchoalveolar lavage fluid (BALf) indicating lung inflammation, increase in both protein in BALf and lung dry/wet weight indicating lung edema, increased lung thiobarbituric acid reactive substances (TBARS) and 8-isoprostanes indicating lung lipid peroxidation, and increased lung protein carbonyls indicating protein oxidation. Either intratracheal or intravenous pretreatment of mice with a 9 amino acid peptide called peroxiredoxin 6 inhibitor peptide-2 (PIP-2) significantly reduced all parameters of lung injury by ~50-80%. PIP-2 inhibits NADPH oxidase type 2 (NOX2) activation. We propose that PIP-2 does not affect the mechanically induced lung damage component of VILI but does significantly reduce the secondary inflammatory component.

Keywords: NADPH oxidase type2 (NOX2); acute lung injury (ALI); lung oxidant stress; peroxiredoxin 6 inhibitor peptide-2 (PIP-2); reactive O2 species (ROS).