The aim of this study was to synthesize and characterize a novel methacrylate-functionalized calcium phosphate (MCP) to be used as a bioactive compound for innovative dental composites. The characterization was accomplished by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The incorporation of MCP as a bioactive filler in esthetic dental composite formulations and the ability of MCP containing dental composites to promote the precipitation of hydroxyapatite (HAp) on the surfaces of those dental composites was explored. The translucency parameter, depth of cure, degree of conversion, ion release profile, and other physical properties of the composites were studied with respect to the amount of MCP added to the composites. Composite with 3 wt.% MCP showed the highest flexural strength and translucency compared to the control composite and composites with 6 wt.% and 20 wt.% MCP. The progress of the surface precipitation of hydroxyapatite on the MCP containing dental composites was studied by systematically increasing the MCP content in the composite and the time of specimen storage in Dulbecco's phosphate-buffered solution with calcium and magnesium. The results suggested that good bioactivity properties are exhibited by MCP containing composites. A direct correlation between the percentage of MCP in a composite formulation, the amount of time the specimen was stored in PBS, and the deposition of hydroxyapatite on the composite's surface was observed.
Keywords: biomineralization; dental composite; esthetic; methacrylated calcium phosphate.