Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun 19;13(6):2099.
doi: 10.3390/nu13062099.

Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders

Affiliations
Review

Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders

Yijing Chen et al. Nutrients. .

Abstract

Emerging evidence indicates that gut microbiota is important in the regulation of brain activity and cognitive functions. Microbes mediate communication among the metabolic, peripheral immune, and central nervous systems via the microbiota-gut-brain axis. However, it is not well understood how the gut microbiome and neurons in the brain mutually interact or how these interactions affect normal brain functioning and cognition. We summarize the mechanisms whereby the gut microbiota regulate the production, transportation, and functioning of neurotransmitters. We also discuss how microbiome dysbiosis affects cognitive function, especially in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.

Keywords: Alzheimer’s disease; cognition; gut microbiota; neurodegeneration; neurotransmitters.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the study design; collection, analysis, or interpretation of data; writing of the manuscript; or the decision to publish the results.

Figures

Figure 1
Figure 1
Gut microbial-mediated neurotransmitter synthesis and its impacts on cognition. Gut microbiota can either produce neurotransmitter precursors, catalyze the synthesis of neurotransmitters through dietary metabolism, or in combination. Some bacterial taxa may signal through their metabolites to promote the synthesis and release of neurotransmitters by enteroendocrine cells (e.g., metabolites produced by spore-forming bacteria serve as signaling molecules to regulate the biosynthesis of serotonin by increasing the expression of its rate-limiting gene TPH1 in enterochromaffin cells). Neurotransmitters synthesized by bacteria and enteroendocrine cells can enter the blood circulation and be transported to other parts of the body. Some neurotransmitter precursors can cross the blood–brain barrier and participate in the synthesis cycle of neurotransmitters in the brain. In addition, neuropod cells located in the intestinal epithelium synthesize and release neurotransmitters such as glutamate, which can transmit sensory signals to the brain within milliseconds through vagus nerve. Gut microbiota-modulated changes in neurotransmitter/precursor synthesis may lead to alterations in brain function and influence cognition in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, autism, and schizophrenia. Abbreviations: 5-HTP, 5-hydroxytryptophan; l-DOPA, l-3,4-dihydroxy-phenylalanine; GABA, gamma-aminobutyric acid.

Similar articles

Cited by

References

    1. Thursby E., Juge N. Introduction to the human gut microbiota. Biochem. J. 2017;474:1823–1836. doi: 10.1042/BCJ20160510. - DOI - PMC - PubMed
    1. Sochocka M., Donskow-Lysoniewska K., Diniz B.S., Kurpas D., Brzozowska E., Leszek J. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease-a Critical Review. Mol. Neurobiol. 2019;56:1841–1851. doi: 10.1007/s12035-018-1188-4. - DOI - PMC - PubMed
    1. Sampson T.R., Debelius J.W., Thron T., Janssen S., Shastri G.G., Ilhan Z.E., Challis C., Schretter C.E., Rocha S., Gradinaru V., et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016;167:1469–1480.e12. doi: 10.1016/j.cell.2016.11.018. - DOI - PMC - PubMed
    1. Zheng P., Zeng B., Zhou C., Liu M., Fang Z., Xu X., Zeng L., Chen J., Fan S., Du X., et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry. 2016;21:786–796. doi: 10.1038/mp.2016.44. - DOI - PubMed
    1. Fetissov S.O., Averina O.V., Danilenko V.N. Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition. 2019;61:43–48. doi: 10.1016/j.nut.2018.10.030. - DOI - PubMed

MeSH terms

Substances