Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins

Molecules. 2021 Jun 9;26(12):3529. doi: 10.3390/molecules26123529.


The ancient paralogs premelanosome protein (PMEL) and glycoprotein nonmetastatic melanoma protein B (GPNMB) have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurodegenerative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway. This juxtaposition inspired us to compare and contrast this family across a breadth of species to better understand the divergent evolutionary trajectories of two related, but distinct, genes. In this study, we investigated the evolutionary history of PMEL and GPNMB in clade-representative species and identified TMEM130 as the most ancient paralog of the family. By curating the functional domains in each paralog, we identified many commonalities dating back to the emergence of the gene family in basal metazoans. PMEL and GPNMB have gained functional domains since their divergence from TMEM130, including the core amyloid fragment (CAF) that is critical for the amyloid potential of PMEL. Additionally, the PMEL gene has acquired the enigmatic repeat domain (RPT), composed of a variable number of imperfect tandem repeats; this domain acts in an accessory role to control amyloid formation. Our analyses revealed the vast variability in sequence, length and repeat number in homologous RPT domains between craniates, even within the same taxonomic class. We hope that these analyses inspire further investigation into a gene family that is remarkable from the evolutionary, pathological and cell biology perspectives.

Keywords: PKAT family proteins; PMEL-17-related family PTHR11861; functional amyloid; melanosomes; neurodegeneration; pigmentation.

MeSH terms

  • Amino Acid Sequence
  • Amyloidogenic Proteins / metabolism
  • Animals
  • Computational Biology / methods
  • Humans
  • Melanocytes / metabolism*
  • Membrane Glycoproteins / genetics
  • Membrane Glycoproteins / metabolism*
  • Mutation*
  • Neurodegenerative Diseases / genetics
  • Neurodegenerative Diseases / metabolism
  • Neurodegenerative Diseases / pathology*
  • Phylogeny
  • Pigmentation
  • Protein Domains
  • Sequence Homology
  • gp100 Melanoma Antigen / genetics
  • gp100 Melanoma Antigen / metabolism*


  • Amyloidogenic Proteins
  • GPNMB protein, human
  • Membrane Glycoproteins
  • PMEL protein, human
  • gp100 Melanoma Antigen