Early Detection and Dynamic Changes of Circulating Tumor Cells in Transgenic NeuN Transgenic (NTTg) Mice with Spontaneous Breast Tumor Development

Cancers (Basel). 2021 Jun 30;13(13):3294. doi: 10.3390/cancers13133294.

Abstract

Background: This study used NeuN transgenic (NTTg) mice with spontaneous breast tumor development to evaluate the dynamic changes of circulating tumor cells (CTCs) prior to and during tumor development.

Methods: In this longitudinal, clinically uninterrupted study, we collected 75 μL of peripheral blood at the age of 8, 12, 16, and 20 weeks in the first group of five mice, and at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability in the second group of four mice. Diluted blood samples were run through a modified mouse-CMx chip to isolate the CTCs.

Results: The CTC counts of the first group of mice were low (1 ± 1.6) initially. The average CTC counts were 16 ± 9.5, 29.0 ± 18.2, and 70.0 ± 30.3 cells per 75 μL blood at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability, respectively. There was a significant positive correlation between an increase in CTC levels and tumor vascular density (p-value < 0.01). This correlation was stronger than that between CTC levels and tumor size (p-value = 0.076). The captured CTCs were implanted into a non-tumor-bearing NTTg mouse for xenografting, confirming their viability and tumorigenesis.

Conclusion: Serial CTCs during an early stage of tumor progression were quantified and found to be positively correlated with the later tumor vascular density and size. Furthermore, the successful generation of CTC-derived xenografts indicates the tumorigenicity of this early onset CTC population.

Keywords: HER2/neu breast cancer; circulating tumor cells; early cancer detection; murine model.