Context: Phosphate homeostasis and its modifiers in early childhood are inadequately characterized.
Objective: To determine physiological plasma phosphate concentration and modifying factors in healthy infants at 12 to 24 months of age.
Design: This study included 525 healthy infants (53% girls), who participated in a randomized vitamin D intervention trial and received daily vitamin D3 supplementation of either 10 or 30 μg from age 2 weeks to 24 months. Biochemical parameters were measured at 12 and 24 months. Dietary phosphate intake was determined at 12 months.
Main outcome measures: Plasma phosphate concentrations at 12 and 24 months of age.
Results: Mean (SD) phosphate concentration decreased from 12 months (1.9 ± 0.15 mmol/L) to 24 months (1.6 ± 0.17 mmol/L) of age (P < 0.001 for repeated measurements). When adjusted by covariates, such as body size, creatinine, serum 25-hydroxyvitamin D, intact and C-terminal fibroblast growth factor 23, mean plasma phosphate was higher in boys than girls during follow-up (P = 0.019). Phosphate concentrations were similar in the vitamin D intervention groups (P > 0.472 for all). Plasma iron was associated positively with plasma phosphate at both time points (B, 0.006 and 0.005; 95% CI, 0.004-0.009 and 0.002-0.008; P < 0.001 at both time points, respectively). At 24 months of age, the main modifier of phosphate concentration was plasma creatinine (B, 0.007; 95% CI 0.003-0.011, P < 0.001).
Conclusion: Plasma phosphate concentration decreased from age 12 to 24 months. In infants and toddlers, the strongest plasma phosphate modifiers were sex, iron, and creatinine, whereas vitamin D supplementation did not modify phosphate concentrations.
Trial registration: ClinicalTrials.gov NCT01723852.
Keywords: clinical trial; hypophosphatemia; mineral homeostasis; phosphate; vitamin D.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.