Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession

Chemosphere. 2021 Dec;284:131378. doi: 10.1016/j.chemosphere.2021.131378. Epub 2021 Jun 28.

Abstract

Cyanobacteria produce numerous volatile organic compounds (VOCs) that show a lytic activity against other cyanobacteria. We found the lytic phenomenon under natural conditions and during densification experiments, and also observed the species change of the cyanobacteria during the lysis processes, in which Microcystis finally became dominant. The species change of the cyanobacteria was strongly suggested to depend on the susceptibility of the cyanobacteria toward the VOCs. To verify this suggestion, the susceptibility of the species was evaluated by the minimal inhibitory concentration (MIC) using axenic cyanobacterial strains against β-cyclocitral, its oxidation products and β-ionone with the aid of log D. It was found that the difference depended on the susceptibility of the cyanobacteria toward the VOCs, in which β-cyclocitral played a crucial role and Microcystis had a significantly protective ability compared to the other cyanobacteria. In addition, the species change of cyanobacteria was consistent with the cyanobacterial seasonal succession in Lakes Sagami and Tsukui, based on data that had been accumulated for 10 years. Conventionally, although this phenomenon could be explained by nutrient availability or the physical structure of the environment, the results of this study revealed that it was controlled by the VOCs, particularly β-cyclocitral produced by the cyanobacteria.

Keywords: Minimal inhibitory concentration (MIC); Seasonal succession; Susceptibility; Volatile organic compounds (VOCs); β-Cyclocitral.

MeSH terms

  • Cyanobacteria*
  • Lakes
  • Microcystis*
  • Seasons
  • Volatile Organic Compounds*

Substances

  • Volatile Organic Compounds