An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
- PMID: 34230489
- PMCID: PMC8260784
- DOI: 10.1038/s41597-021-00946-3
An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
Abstract
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open datasets of segmented fetal brains. Here we introduce a publicly available dataset of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord). In addition, we quantitatively evaluate the accuracy of several automatic multi-tissue segmentation algorithms of the developing human fetal brain. Four research groups participated, submitting a total of 10 algorithms, demonstrating the benefits the dataset for the development of automatic algorithms.
Conflict of interest statement
The authors declare no competing interests.
Figures
Dataset use reported in
- doi: 10.1007/978-3-030-60334-2_29
Similar articles
-
Fetal brain tissue annotation and segmentation challenge results.Med Image Anal. 2023 Aug;88:102833. doi: 10.1016/j.media.2023.102833. Epub 2023 Apr 22. Med Image Anal. 2023. PMID: 37267773
-
Effective Approaches to Fetal Brain Segmentation in MRI and Gestational Age Estimation by Utilizing a Multiview Deep Inception Residual Network and Radiomics.Entropy (Basel). 2022 Nov 23;24(12):1708. doi: 10.3390/e24121708. Entropy (Basel). 2022. PMID: 36554113 Free PMC article.
-
Brain volume estimation from post-mortem newborn and fetal MRI.Neuroimage Clin. 2014 Oct 23;6:438-44. doi: 10.1016/j.nicl.2014.10.007. eCollection 2014. Neuroimage Clin. 2014. PMID: 25379457 Free PMC article.
-
Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge.IEEE Trans Med Imaging. 2021 May;40(5):1363-1376. doi: 10.1109/TMI.2021.3055428. Epub 2021 Apr 30. IEEE Trans Med Imaging. 2021. PMID: 33507867 Free PMC article. Review.
-
Fetal postmortem imaging: an overview of current techniques and future perspectives.Am J Obstet Gynecol. 2020 Oct;223(4):493-515. doi: 10.1016/j.ajog.2020.04.034. Epub 2020 May 4. Am J Obstet Gynecol. 2020. PMID: 32376319 Review.
Cited by
-
Craniofacial phenotyping with fetal MRI: a feasibility study of 3D visualisation, segmentation, surface-rendered and physical models.BMC Med Imaging. 2024 Mar 1;24(1):52. doi: 10.1186/s12880-024-01230-7. BMC Med Imaging. 2024. PMID: 38429666 Free PMC article.
-
Characterization of dynamic patterns of human fetal to neonatal brain asymmetry with deformation-based morphometry.Front Neurosci. 2023 Dec 6;17:1252850. doi: 10.3389/fnins.2023.1252850. eCollection 2023. Front Neurosci. 2023. PMID: 38130698 Free PMC article.
-
A spatio-temporal atlas of the developing fetal brain with spina bifida aperta.Open Res Eur. 2022 Aug 31;1:123. doi: 10.12688/openreseurope.13914.2. eCollection 2021. Open Res Eur. 2022. PMID: 37645096 Free PMC article.
-
AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI.Bioengineering (Basel). 2023 Jun 30;10(7):783. doi: 10.3390/bioengineering10070783. Bioengineering (Basel). 2023. PMID: 37508809 Free PMC article.
-
3D T2w fetal body MRI: automated organ volumetry, growth charts and population-averaged atlas.medRxiv [Preprint]. 2023 Sep 18:2023.05.31.23290751. doi: 10.1101/2023.05.31.23290751. medRxiv. 2023. PMID: 37398121 Free PMC article. Preprint.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
