Thermal Decomposition of Anionic, Zwitterionic, and Cationic Polyfluoroalkyl Substances in Aqueous Film-Forming Foams

Environ Sci Technol. 2021 Jul 20;55(14):9885-9894. doi: 10.1021/acs.est.1c02125. Epub 2021 Jul 8.

Abstract

In this study, we investigated thermal decomposition mechanisms of cationic, zwitterionic, and anionic polyfluoroalkyl substances, including those present in aqueous film-forming foam (AFFF) samples. We present novel evidence that polyfluoroalkyl substances gave quantitative yields of perfluoroalkyl substances of different chain lengths during thermal treatment. The results support a radical-mediated transformation mechanism involving random-chain scission and end-chain scission, leading to the formation of perfluoroalkyl carboxylic acids such as perfluorooctanoic acid (PFOA) from certain polyfluoroalkyl amides and sulfonamides. Our results also support a direct thermal decomposition mechanism (chain stripping) on the nonfluorinated moiety of polyfluoroalkyl sulfonamides, resulting in the formation of perfluorooctanesulfonic acid (PFOS) and other structurally related polyfluoroalkyl compounds. Thermal decomposition of 8:2 fluorotelomer sulfonate occurred through end-chain scission and recombination reactions, successively yielding PFOS. All of the studied polyfluoroalkyl substances began to degrade at 200-300 °C, exhibiting near-complete decomposition at ≥400 °C. Using a high-resolution parent ion search method, we demonstrated for the first time that low-temperature thermal treatments of AFFF samples led to the generation of anionic fluoroalkyl substances, including perfluoroheptanesulfonamide, 8:2 fluorotelomer sulfonic acid, N-methyl perfluorooctane sulfonamide, and a previously unreported compound N-2-propenyl-perfluorohexylsulfonamide. This study provides key insights into the fate of polyfluoroalkyl substances in thermal processes.

Keywords: PFAS; decomposition mechanisms; high-resolution PIS; precursor compounds; thermal decomposition of PFAS; thermal generation of PFAS; thermal transformation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carboxylic Acids
  • Fluorocarbons* / analysis
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Carboxylic Acids
  • Fluorocarbons
  • Water Pollutants, Chemical
  • Water