Depth distributions of signaling molecules in Pseudomonas aeruginosa biofilms mapped by confocal Raman microscopy

J Chem Phys. 2021 May 28;154(20):204201. doi: 10.1063/5.0052785.


Pseudomonas aeruginosa is an opportunistic human pathogen implicated in both acute and chronic diseases, which resists antibiotic treatment, in part by forming physical and chemical barriers such as biofilms. Here, we explore the use of confocal Raman imaging to characterize the three-dimensional (3D) spatial distribution of alkyl quinolones (AQs) in P. aeruginosa biofilms by reconstructing depth profiles from hyperspectral Raman data. AQs are important to quorum sensing (QS), virulence, and other actions of P. aeruginosa. Three-dimensional distributions of three different AQs (PQS, HQNO, and HHQ) were observed to have a significant depth, suggesting 3D anisotropic shapes-sheet-like rectangular solids for HQNO and extended cylinders for PQS. Similar to observations from 2D imaging studies, spectral features characteristic of AQs (HQNO or PQS) and the amide I vibration from peptide-containing species were found to correlate with the PQS cylinders typically located at the tips of the HQNO rectangular solids. In the QS-deficient mutant lasIrhlI, a small globular component was observed, whose highly localized nature and similarity in size to a P. aeruginosa cell suggest that the feature arises from HHQ localized in the vicinity of the cell from which it was secreted. The difference in the shapes and sizes of the aggregates of the three AQs in wild-type and mutant P. aeruginosa is likely related to the difference in the cellular response to growth conditions, environmental stress, metabolic levels, or other structural and biochemical variations inside biofilms. This study provides a new route to characterizing the 3D structure of biofilms and shows the potential of confocal Raman imaging to elucidate the nature of heterogeneous biofilms in all three spatial dimensions. These capabilities should be applicable as a tool in studies of infectious diseases.

MeSH terms

  • Biofilms / drug effects*
  • Biofilms / growth & development
  • Microscopy, Confocal
  • Pseudomonas aeruginosa / drug effects*
  • Quinolones / chemistry
  • Quinolones / pharmacology*
  • Spectrum Analysis, Raman


  • Quinolones