Multi-chord IR-visible two-color interferometer on KSTAR

Rev Sci Instrum. 2021 Apr 1;92(4):043559. doi: 10.1063/5.0043811.

Abstract

Major parts of an IR-visible two-color interferometer (TCI) on KSTAR have been upgraded for the multi-chord operation: (1) a diode-pumped-solid-state (DPSS) laser (660 nm) replacing the former HeNe laser (633 nm), (2) vacuum-compatible vibration isolator with titanium retro-reflectors, and (3) full digital phase comparator for multi-chord real-time density signals. The commercial compact DPSS laser suits the multiple chord configuration with its strong beam power (500 mW) and long coherent length (>100 m). Ti retro-reflectors are mounted on vacuum-compatible vibration isolators. The isolators are essential for the visible beams to avoid any fringe skips due to their short wavelength, considering the speed of the mechanical vibration (up to hundreds of μm). Field-programmable-gate-array (FPGA) modules count the entire fringes fast enough with a signal output rate up to 1.25 MHz, solving the fringe skip issues. The FPGA module enables the full digital processing of the phase comparator with a CORDIC algorithm after the sampling rate of 160 MS/s for the 40 MHz intermediate frequency of each beam. The full digital signals are transferred to the main plasma control system in real-time. Stable single-input-single-output operation of the KSTAR density control was demonstrated with the TCI. The real-time density profile control is also promising in the near future, with multiple actuators such as pellets and gas puffings.