Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: In silico and in vitro studies

Bioorg Chem. 2021 Sep:114:105145. doi: 10.1016/j.bioorg.2021.105145. Epub 2021 Jul 5.


The novel coronavirus disease (Covid-19) has become a major health threat globally. The interaction of SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) with ACE2 receptor on host cells was recognized as the first step of virus infection and therefore as one of the primary targets for novel therapeutics. Pomegranate extracts are rich sources of bioactive polyphenols that were already recognized for their beneficial health effects. In this study, both in silico and in vitro methods were employed for evaluation of pomegranate peel extract (PoPEx), their major polyphenols, as well as their major metabolite urolithin A, to attenuate the contact of S-glycoprotein RBD and ACE2. Our results showed that PoPEx, punicalin, punicalagin and urolithin A exerted significant potential to block the S-glycoprotein-ACE2 contact. These in vitro results strongly confirm the in silico predictions and provide a valuable insight in the potential of pomegranate polyphenols for application in SARS-CoV-2 infection.

Keywords: ACE2; Pomegranate; Punicalagin; Punicalin; SARS-CoV-2; Spike glycoprotein; Urolithin A.

MeSH terms

  • Angiotensin-Converting Enzyme 2 / metabolism
  • Chromatography, High Pressure Liquid
  • Complex Mixtures / chemistry
  • Complex Mixtures / pharmacology*
  • Fruit / chemistry
  • Humans
  • Molecular Docking Simulation
  • Polyphenols / pharmacology*
  • Pomegranate / chemistry*
  • Protein Binding / drug effects
  • SARS-CoV-2 / drug effects*
  • Spike Glycoprotein, Coronavirus / metabolism


  • Complex Mixtures
  • Polyphenols
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • ACE2 protein, human
  • Angiotensin-Converting Enzyme 2