First record of entomopathogenic nematodes from Yucatán State, México and their infectivity capacity against Aedes aegypti

PeerJ. 2021 Jul 2;9:e11633. doi: 10.7717/peerj.11633. eCollection 2021.

Abstract

Background: Biological control using entomopathogenic nematodes (EPN) has demonstrated good potential to contribute to the integral control of mosquito larvae, which as adults are vectors of diseases such as Dengue fever, Zika and Chikungunya. However, until now there are no records of the presence of EPN or their killing capacity in Yucatán state, southern México. The objectives of the current study were: (1) to report the entomopathogenic nematodes present in Yucatán soils and (2) to determine the killing capacity of the most frequent and abundant EPN against Aedes aegypti mosquito larvae and the microbial community developed by Ae. Aegypti exposed to this EPN.

Methods: The nematodes were collected by the insect trap technique using the great wax moth Galleria mellonella. Internal transcribed spacer (ITS), 28S gene of ribosomal DNA and phylogenetic analyses were performed to identify the EPN. For the bioassay, four concentrations of the most frequent and abundant EPN were tested: 1,260:1 infective juveniles (IJs) per mosquito larvae, 2,520 IJs:1, 3,780 IJs:1 and 5,040 IJs:1. High-throughput sequencing of the 16S rRNA gene was used to identify bacterial amplicon sequences in the mosquito larvae infected with EPN.

Results: Six isolates of Heterorhabditis were recovered from 144 soil samples. Heterorhabditis indica (four isolates) was the most frequent and abundant EPN, followed by Heterorhabditis n. sp. (two isolates). Both nematodes are reported for the first time for Yucatán state, Mexico. The concentration of 2,520 IJs:1 produced 80% of mosquito larvae mortality in 48 h. Representative members of Photorhabdus genus were numerically dominant (74%) in mosquito larvae infected by H. indica. It is most likely that these bacteria produce secondary toxic metabolites that enhance the mortality of these mosquito larvae.

Keywords: 16S rRNA; Aedes aegypti; Biological control; Galleria mellonella; Heterorhabditis indica; Photorhabdus.

Grant support

Mariana B. Ávila-López benefited from a PhD student grant from the Consejo Nacional de Ciencia y Tecnología (CONACYT) of the Mexican Government (Scholarship No. 340012). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.