Comparing predictors of sentence self-paced reading times: Syntactic complexity versus transitional probability metrics

PLoS One. 2021 Jul 12;16(7):e0254546. doi: 10.1371/journal.pone.0254546. eCollection 2021.

Abstract

When estimating the influence of sentence complexity on reading, researchers typically opt for one of two main approaches: Measuring syntactic complexity (SC) or transitional probability (TP). Comparisons of the predictive power of both approaches have yielded mixed results. To address this inconsistency, we conducted a self-paced reading experiment. Participants read sentences of varying syntactic complexity. From two alternatives, we selected the set of SC and TP measures, respectively, that provided the best fit to the self-paced reading data. We then compared the contributions of the SC and TP measures to self-paced reading times when entered into the same model. Our results showed that while both measures explained significant portions of variance in reading times (over and above control variables: word/sentence length, word frequency and word position) when included in independent models, their contributions changed drastically when SC and TP were entered into the same model. Specifically, we only observed significant effects of TP. We conclude that in our experiment the control variables explained the bulk of variance. When comparing the small effects of SC and TP, the effects of TP appear to be more robust.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Benchmarking
  • Female
  • Humans
  • Language
  • Male
  • Reaction Time / physiology*
  • Reading*
  • Young Adult

Grants and funding

BK and FH were funded by the Netherlands Organization for Scientific Research (NWO), Gravitation grant ‘Language in Interaction’ (grant number 024.001.006). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.