Increased integration between default mode and task-relevant networks in children with ADHD is associated with impaired response control

Dev Cogn Neurosci. 2021 Aug:50:100980. doi: 10.1016/j.dcn.2021.100980. Epub 2021 Jun 22.

Abstract

Default mode network (DMN) dysfunction is theorized to play a role in attention lapses and task errors in children with attention-deficit/hyperactivity disorder (ADHD). In ADHD, the DMN is hyperconnected to task-relevant networks, and both increased functional connectivity and reduced activation are related to poor task performance. The current study extends existing literature by considering interactions between the DMN and task-relevant networks from a brain network perspective and by assessing how these interactions relate to response control. We characterized both static and time-varying functional brain network organization during the resting state in 43 children with ADHD and 43 age-matched typically developing (TD) children. We then related aspects of network integration to go/no-go performance. We calculated participation coefficient (PC), a measure of a region's inter-network connections, for regions of the DMN, canonical cognitive control networks (fronto-parietal, salience/cingulo-opercular), and motor-related networks (somatomotor, subcortical). Mean PC was higher in children with ADHD as compared to TD children, indicating greater integration across networks. Further, higher and less variable PC was related to greater commission error rate in children with ADHD. Together, these results inform our understanding of the role of the DMN and its interactions with task-relevant networks in response control deficits in ADHD.

Keywords: ADHD; Default mode network; Functional connectivity; Response control; Resting state; Task-relevant networks.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Attention Deficit Disorder with Hyperactivity*
  • Brain
  • Brain Mapping
  • Child
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Neural Pathways