Designing Nonfullerene Acceptors with Oligo(Ethylene Glycol) Side Chains: Unraveling the Origin of Increased Open-Circuit Voltage and Balanced Charge Carrier Mobilities

Chem Asian J. 2021 Sep 1;16(17):2481-2488. doi: 10.1002/asia.202100660. Epub 2021 Jul 21.

Abstract

Despite the recent rapid development of organic solar cells (OSCs), the low dielectric constant (ϵr =3-4) of organic semiconducting materials limits their performance lower than inorganic and perovskite solar cells. In this work, we introduce oligo(ethylene glycol) (OEG) side chains into the dicyanodistyrylbenzene-based non-fullerene acceptors (NIDCS) to increase its ϵr up to 5.4. In particular, a NIDCS acceptor bearing two triethylene glycol chains (NIDCS-EO3) shows VOC as high as 1.12 V in an OSC device with a polymer donor PTB7, which is attributed to reduced exciton binding energy of the blend film. Also, the larger size grain formation with well-ordered stacking structure of the NIDCS-EO3 blend film leads to the increased charge mobility and thus to the improved charge mobility balance, resulting in higher JSC , FF, and PCE in the OSC device compared to those of a device using the hexyl chain-based NIDCS acceptor (NIDCS-HO). Finally, we fabricate NIDCS-EO3 devices with various commercial donors including P3HT, DTS-F, and PCE11 to show higher photovoltaic performance than the NIDCS-HO devices, suggesting versatility of NIDCS-EO3.

Keywords: Oligo(ethylene glycol); dielectric constant; non-fullerene acceptors; open-circuit voltage; organic solar cells.