Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire

Ecol Appl. 2021 Oct;31(7):e02411. doi: 10.1002/eap.2411. Epub 2021 Aug 11.

Abstract

Unseasonal fire occurrence is increasing globally, driven by climate change and other human activity. Changed timing of fire can inhibit postfire seedling recruitment through interactions with plant phenology (the timing of key processes, e.g., flower initiation, seed production, dispersal, germination), and therefore threaten the persistence of many plant species. Although empirical evidence from winter-rainfall ecosystems shows that optimal seedling recruitment is expected following summer and autumn (dry season) fires, we sought experimental evidence isolating the mechanisms of poor recruitment following unseasonal (wet season) fire. We implemented a seed-sowing experiment using nine species native to fire-prone, Mediterranean-climate woodlands in southwestern Australia to emulate the timing of postfire recruitment and test key mechanisms of fire seasonality effects. For seeds sown during months when fire is unseasonal (i.e., August-September: end of the wet winter season), seedling recruitment was reduced by up to 99% relative to seeds sown during seasonal fire months (i.e., May-June: end of the dry summer season) because of varying seed persistence, seedling emergence, and seedling survival. We found that up to 70 times more seedlings emerged when seeds were sown during seasonal fire months compared to when seeds were sown during unseasonal fire months. The few seedlings that emerged from unseasonal sowings all died with the onset of the dry season. Of the seeds that failed to germinate from unseasonal sowings, only 2% survived exposure on the soil surface over the ensuing hot and dry summer. Our experimental results demonstrate the potential for unseasonal fire to inhibit seedling recruitment via impacts on pregermination seed persistence and seedling establishment. As ongoing climate change lengthens fire seasons (i.e., unseasonal wildfires become more common) and managed fires are implemented further outside historically typical fire seasons, postfire seedling recruitment may become more vulnerable to failure, causing shifts in plant community composition towards those with fewer species solely dependent on seeds for regeneration.

Keywords: Banksia woodlands; fire regime; fire season; germination; plant demography; prescribed burning; species functional traits; survival analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ecosystem
  • Fires*
  • Germination
  • Seedlings*
  • Seeds

Associated data

  • Dryad/10.5061/dryad.qrfj6q5fb