Huntingtin fibrils with different toxicity, structure, and seeding potential can be interconverted
- PMID: 34257293
- PMCID: PMC8277859
- DOI: 10.1038/s41467-021-24411-2
Huntingtin fibrils with different toxicity, structure, and seeding potential can be interconverted
Abstract
The first exon of the huntingtin protein (HTTex1) important in Huntington's disease (HD) can form cross-β fibrils of varying toxicity. We find that the difference between these fibrils is the degree of entanglement and dynamics of the C-terminal proline-rich domain (PRD) in a mechanism analogous to polyproline film formation. In contrast to fibril strains found for other cross-β fibrils, these HTTex1 fibril types can be interconverted. This is because the structure of their polyQ fibril core remains unchanged. Further, we find that more toxic fibrils of low entanglement have higher affinities for protein interactors and are more effective seeds for recombinant HTTex1 and HTTex1 in cells. Together these data show how the structure of a framing sequence at the surface of a fibril can modulate seeding, protein-protein interactions, and thereby toxicity in neurodegenerative disease.
© 2021. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Formation and Structure of Wild Type Huntingtin Exon-1 Fibrils.Biochemistry. 2017 Jul 18;56(28):3579-3586. doi: 10.1021/acs.biochem.7b00138. Epub 2017 Jul 7. Biochemistry. 2017. PMID: 28621522 Free PMC article.
-
Amplification of neurotoxic HTTex1 assemblies in human neurons.Neurobiol Dis. 2021 Nov;159:105517. doi: 10.1016/j.nbd.2021.105517. Epub 2021 Sep 24. Neurobiol Dis. 2021. PMID: 34563643 Free PMC article.
-
The 17-residue-long N terminus in huntingtin controls stepwise aggregation in solution and on membranes via different mechanisms.J Biol Chem. 2018 Feb 16;293(7):2597-2605. doi: 10.1074/jbc.M117.813667. Epub 2017 Dec 27. J Biol Chem. 2018. PMID: 29282287 Free PMC article.
-
The pathobiology of perturbed mutant huntingtin protein-protein interactions in Huntington's disease.J Neurochem. 2019 Nov;151(4):507-519. doi: 10.1111/jnc.14853. Epub 2019 Sep 15. J Neurochem. 2019. PMID: 31418858 Review.
-
Spontaneous self-assembly of pathogenic huntingtin exon 1 protein into amyloid structures.Essays Biochem. 2014;56:167-80. doi: 10.1042/bse0560167. Essays Biochem. 2014. PMID: 25131594 Review.
Cited by
-
Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils.J Struct Biol X. 2022 Nov 11;6:100077. doi: 10.1016/j.yjsbx.2022.100077. eCollection 2022. J Struct Biol X. 2022. PMID: 36419510 Free PMC article.
-
Role of conformational dynamics in pathogenic protein aggregation.Curr Opin Chem Biol. 2023 Apr;73:102280. doi: 10.1016/j.cbpa.2023.102280. Epub 2023 Mar 4. Curr Opin Chem Biol. 2023. PMID: 36878172 Free PMC article. Review.
-
Molecular Pathophysiological Mechanisms in Huntington's Disease.Biomedicines. 2022 Jun 17;10(6):1432. doi: 10.3390/biomedicines10061432. Biomedicines. 2022. PMID: 35740453 Free PMC article. Review.
-
Hunting for the cause: Evidence for prion-like mechanisms in Huntington's disease.Front Neurosci. 2022 Aug 24;16:946822. doi: 10.3389/fnins.2022.946822. eCollection 2022. Front Neurosci. 2022. PMID: 36090278 Free PMC article. Review.
-
Solid-state nuclear magnetic resonance in the structural study of polyglutamine aggregation.Biochem Soc Trans. 2024 Apr 24;52(2):719-731. doi: 10.1042/BST20230731. Biochem Soc Trans. 2024. PMID: 38563485 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
