A prospective study on outcome of patient-specific cones in revision knee arthroplasty

Arch Orthop Trauma Surg. 2021 Dec;141(12):2277-2286. doi: 10.1007/s00402-021-04047-z. Epub 2021 Jul 15.


Background: Cones are known to be good substitutes for metaphyseal and diaphyseal bone loss during revision total knee arthroplasty (RTKA). Often the off-the-shelf cones do not fit to the individual patient's anatomy. New 3D-printing additive technologies allow to develop patient-specific cones. The aim of this prospective study was to describe their outcome.

Methods: From 2017 until 2020, 35 patient-specific titanium cones (15 femoral and 20 tibial) were implanted during 31 RTKAs (45% varus-valgus constrained implants and 55% rotating hinges). Clinical outcome was evaluated using KSS, WOMAC and FJS-12 scoring systems at 12 and 24 months. No patients were lost for follow-up.

Results: In all cases, there were no technical difficulties in adapting the cones to both the host bone and the revision implant. By the time of performing data analysis (January 2021), none of the 31 patients needed revision surgery for any reason. At 12 months of follow-up, the mean values of scores for knee function improved significantly from baseline (p < 0.01): KSS-103.00 (min 100-max 111, SD 5.35), WOMAC-16.5 (min 9-max 24, SD 6.45), FJS-12-61.60 (min 52-max 76, SD 9.20). At 24 months, the trend towards improvement of functional results continued but did not reached statistical significance comparing to 12 months: KSS was 105.92 (min 95-max 155, SD 16.18), WOMAC-14.07 (min 0-max 42, SD 12.42), FJS-12-83.78 (min 65-max 97, SD 09.64). Radiographic signs of osteointegration were detected within the first 6 month after surgery in all cases. Loosening of femoral or tibial components as well as peri-prosthetic infection was not observed in any of the patients during the follow-up.

Conclusion: The original additive technology for designing and producing patient-specific metaphyseal and diaphyseal cones with different porosity zones for extensive femoral and tibial bone defects in RTKA is precise and clinically effective solution, at least in the short term. It could be a valid alternative to "off-the-shelf" cones or sleeves as well as structural allografts and even mega-prosthesis, but a longer follow-up period is required to assess its medium- and long-term reliability.

Keywords: 3D printing; Additive technology; Bone defect; Knee; Patient-specific implant; Revision arthroplasty.

MeSH terms

  • Arthroplasty, Replacement, Knee*
  • Humans
  • Knee Joint / surgery
  • Knee Prosthesis*
  • Prospective Studies
  • Prosthesis Design
  • Reoperation
  • Reproducibility of Results
  • Retrospective Studies
  • Treatment Outcome