Field-theoretic simulations beyond δ-interactions: Overcoming the inverse potential problem in auxiliary field models

J Chem Phys. 2021 Jul 14;155(2):024106. doi: 10.1063/5.0055255.

Abstract

Modern field-theoretic simulations of complex fluids and polymers are constructed around a particle-to-field transformation that brings an inverse potential u-1 in the model equations. This has restricted the application of the framework to systems characterized by relatively simple pairwise interatomic interactions; for example, excluded volume effects are treated through the use of δ-function interactions. In this study, we first review available nonbonded pair interactions in field-theoretic models and propose a classification. Then, we outline the inverse potential problem and present an alternative approach on the basis of a saddle-point approximation, enabling the use of a richer set of pair interaction functions. We test our approach by using as an example the Morse potential, which finds extensive applications in particle-based simulations, and we calibrate u-1 with results from a molecular dynamics simulation. The u-1 thus obtained is consistent with the field-theoretic model equations, and when used in stand-alone self-consistent field simulations, it produces the correct fluid structure starting from a random initial state of the density field.