Significantly Raised Visible-Light Photocatalytic H2 Evolution on a 2D/2D ReS2 /In2 ZnS4 van der Waals Heterostructure

Small. 2021 Aug;17(32):e2100296. doi: 10.1002/smll.202100296. Epub 2021 Jul 16.


Owing to dwindling fossil fuels reserves, the development of alternative renewable energy sources is globally important. Photocatalytic hydrogen (H2 ) evolution represents a practical and affordable alternative to convert sunlight into carbon-free H2 fuel. Recently, 2D/2D van der Waals heterostructures (vdWHs) have attracted significant research attention for photocatalysis. Here, for the first time a ReS2 /In2 ZnS4 2D/2D vdWH synthesized via a facile physical mixing is reported. It exhibits a highly promoted photocatalytic H2 -evolution rate of 2515 µmol h-1 g-1 . Importantly, this exceeds that for pristine In2 ZnS4 by about 22.66 times. This, therefore, makes ReS2 /In2 ZnS4 one of the most efficient In2 ZnS4 -based photocatalysts without noble-metal cocatalysts. Advanced characterizations and theoretical computations results show that interlayer electronic interaction within ReS2 /In2 ZnS4 vdWH and atomic-level S active centers along the edges of ReS2 NSs work collaboratively to result in the boosted light-induced H2 evolution. Results will be of immediate benefit in the rational design and preparation of vdWHs for applications in catalysis/(opto)electronics.

Keywords: 2D/2D van der Waals heterostructures; atomic-level S active sites; photocatalytic hydrogen evolution; rhenium disulfide.