Air spread through a wetted deformable membrane: Implications for the mechanism of soft valves in plants

Phys Rev E. 2021 Jun;103(6-1):062407. doi: 10.1103/PhysRevE.103.062407.

Abstract

Plants have a special structure, torus-margo (TM) pit, which comprises a thickened torus at the center encircled by a highly porous margo. It is regarded as a key evolutionary structure to enable stable water transport, minimizing the air spread in the vessels. However, its valve-like dynamics to regulate two-phase flows still remains unclear even at a single pit level. Here, we study the air spreading dynamics using a bioinspired model of this soft pit valve. We divide it into the initial onset and the consecutive air-spreads, and propose the criteria of TM structures as the valve-like function. To delay the onset of air spread, the margo region should be thin and deformable enough to seal the pit aperture with the torus before the air penetration. Even after the onset, the membranes whose maximum pore size is smaller than its thickness can avoid continuous air-spread. The criteria also fit properly into botanical data on the morphologies of TM pits, implying that their valve-like behaviors may alleviate the tradeoff between hydraulic safety and efficiency at the single pit level. Our study would help to understand of the mechanistic pit-level strategy and also can provide insight into fluidic systems to control interfacial phenomena.