Biopsy marker localization with thermo-acoustic ultrasound for lumpectomy guidance

Med Phys. 2021 Oct;48(10):6069-6079. doi: 10.1002/mp.15115. Epub 2021 Aug 3.

Abstract

Purpose: Almost one in four lumpectomies fails to fully remove cancerous tissue from the breast, requiring reoperation. This high failure rate suggests that existing lumpectomy guidance methods are inadequate for allowing surgeons to consistently identify the proper volume of tissue for excision. Current guidance techniques either provide little information about the tumor position or require surgeons to frequently switch between making incisions and manually probing for a marker placed at the lesion site. This article explores the feasibility of thermo-acoustic ultrasound (TAUS) to enable hands-free localization of metallic biopsy markers throughout surgery, which would allow for continuous visualization of the lesion site in the breast without the interruption of surgery. In a TAUS-based localization system, microwave excitations would be transmitted into the breast, and the amplification in microwave absorption around the metallic markers would generate acoustic signals from the marker sites through the thermo-acoustic effect. Detection and ranging of these signals by multiple acoustic receivers on the breast could then enable marker localization through acoustic multilateration.

Methods: Physics simulations were used to characterize the TAUS signals generated from different markers by microwave excitations. First, electromagnetic simulations determined the spatial pattern of the amplification in microwave absorption around the markers. Then, acoustic simulations characterized the acoustic fields generated from these markers at various acoustic frequencies. TAUS-based one-dimensional (1D) ranging of two metallic markers-including a biopsy marker that is FDA-approved for clinical use-immersed in saline was also performed using a bench-top setup. To perform TAUS acquisitions, a microwave applicator was driven by 2.66 GHz microwave signals that were amplitude-modulated by chirps at the desired acoustic excitation frequencies, and the resulting TAUS signal from the markers was detected by an ultrasonic transducer.

Results: The simulation results show that the geometry of the marker strongly impacts the quantity and spatial pattern of both the microwave absorption around the marker and the resulting TAUS signal generated from the marker. The simulated TAUS signal maps and acoustic frequency responses also make clear that the marker geometry plays an important role in determining the overall system response. Using the bench-top setup, TAUS detection and 1D localization of the markers were successfully demonstrated for multiple different combinations of microwave applicator and metallic marker. These initial results indicate that TAUS-based localization of biopsy markers is feasible.

Conclusions: Through microwave excitations and acoustic detection, TAUS can be used to localize metallic biopsy markers. With further development, TAUS opens new avenues to enable a more intuitive lumpectomy guidance system that could help to achieve better lumpectomy outcomes.

Keywords: breast-conserving surgery; lumpectomy; surgical guidance; thermo-acoustics.

MeSH terms

  • Acoustics
  • Biopsy
  • Breast
  • Breast Neoplasms* / diagnostic imaging
  • Breast Neoplasms* / surgery
  • Female
  • Humans
  • Mastectomy, Segmental*
  • Ultrasonography