Exosomal miRNA-205 promotes breast cancer chemoresistance and tumorigenesis through E2F1

Aging (Albany NY). 2021 Jul 22;13(14):18498-18514. doi: 10.18632/aging.203298. Epub 2021 Jul 22.

Abstract

Breast cancer (BC) is a common malignant tumor in females. The challenge in treating BC is overcoming chemoresistance. Exosome-mediated transfer of miRNAs is a molecule-shuttle in intercellular communication. Thus, we aimed to investigate whether exosomal miRNA-205 could affect chemoresistance and tumorigenesis in recipient tumor cells and to elucidate the underlying mechanism in vivo and in vitro. Microarray and qRT-PCR assays demonstrated that miRNA-205 was upregulated in tamoxifen resistance MCF-7/TAMR-1 (M/T) cells and M/T cell-derived exosomes (M/T-Exo). The M/T-Exo was internalized by human BC cells (BCCs), causing increased expression of miRNA-205 in BCCs. Coculturing with M/T-Exo promoted tamoxifen resistance, proliferation, migration, and invasion while suppressed apoptosis in recipient BCCs, which were associated with activating the caspase pathway and phosphorylating Akt. Luciferase reporter assays showed that miRNA-205 directly targeted E2F Transcription Factor 1 (E2F1) in BCCs. Furthermore, knockdown of miRNA-205 or overexpression of E2F1 reversed the roles of M/T-Exo in BCCs. In vivo experiments showed that the intratumoral injection of M/T-Exo caused greater tamoxifen resistance and larger tumor size relative to mice treated with miRNA-205-knockdown or E2F1-overexpressing BCCs. Together, the results suggest that exosomal miRNA-205 may promote tamoxifen resistance and tumorigenesis in BC through targeting E2F1 in vivo and in vitro.

Keywords: breast cancer; chemoresistance; exosome; miRNA-205; tumorigenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Animals
  • Antibiotics, Antineoplastic / pharmacology
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Carcinogenesis / genetics
  • Carcinogenesis / metabolism
  • Carcinogenesis / pathology
  • Caspases / metabolism
  • Cell Movement / drug effects
  • Cell Movement / genetics
  • Cell Proliferation / drug effects
  • Cell Proliferation / genetics
  • Cell Transformation, Neoplastic / metabolism
  • Drug Resistance, Neoplasm
  • E2F1 Transcription Factor / genetics
  • E2F1 Transcription Factor / metabolism*
  • Exosomes / genetics
  • Exosomes / metabolism*
  • Female
  • Humans
  • MCF-7 Cells
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Middle Aged
  • Xenograft Model Antitumor Assays

Substances

  • Antibiotics, Antineoplastic
  • E2F1 Transcription Factor
  • E2F1 protein, human
  • MIRN205 microRNA, human
  • MicroRNAs
  • Caspases