Microbial Synthesis and Evaluation of Fungistatic Activity of 3-Butyl-3-hydroxyphthalide, the Mammalian Metabolite of 3- n-Butylidenephthalide

Int J Mol Sci. 2021 Jul 15;22(14):7600. doi: 10.3390/ijms22147600.


Phthalides are bioactive compounds that naturally occur in the family Apiaceae. Considering their potentially versatile applications, it is desirable to determine their physical properties, activity and metabolic pathways. This study aimed to examine the utility of whole-cell biocatalysts for obtaining 3-butyl-3-hydroxyphthalide, which is the metabolite formulated during mammalian metabolism of 3-n-butylidenephthalide. We performed transformations using 10 strains of fungi, five of which efficiently produced 3-butyl-3-hydroxyphthalide. The product yield, determined by high-performance liquid chromatography, reached 97.6% when Aspergillus candidus AM 386 was used as the biocatalyst. Increasing the scale of the process resulted in isolation yields of 29-45% after purification via reversed-phase thin layer chromatography, depending on the strain of the microorganism used. We proposed different mechanisms for product formation; however, hydration of 3-n-butylidenephthalide seems to be the most probable. Additionally, all phthalides were tested against clinical strains of Candida albicans using the microdilution method. Two phthalides showed a minimum inhibitory concentration, required to inhibit the growth of 50% of organisms, below 50 µg/mL. The 3-n-butylidenephthalide metabolite was generally inactive, and this feature in combination with its low lipophilicity suggests its involvement in the detoxification pathway. The log P value of tested compounds was in the range of 2.09-3.38.

Keywords: Apiaceae; antifungal activity; bioactivity; biotransformations; lactones; lipophilicity; phthalides.

Publication types

  • Evaluation Study

MeSH terms

  • Animals
  • Antifungal Agents / chemistry
  • Antifungal Agents / pharmacology*
  • Candida albicans / drug effects*
  • Candida albicans / growth & development
  • Fungi / drug effects*
  • Fungi / growth & development
  • Hydrophobic and Hydrophilic Interactions
  • Lipids / chemistry*
  • Mammals
  • Phthalic Anhydrides / chemistry
  • Phthalic Anhydrides / pharmacology*


  • Antifungal Agents
  • Lipids
  • Phthalic Anhydrides
  • butylidenephthalide