The potential of iodinated contrast reduction in dual-energy CT thoracic angiography; an evaluation of image quality

Radiography (Lond). 2021 Jul 20;S1078-8174(21)00086-9. doi: 10.1016/j.radi.2021.07.006. Online ahead of print.


Introduction: The purpose of this study was to compare a dual energy CT (DECT) protocol with 50% reduction of iodinated contrast to a single energy CT (SECT) protocol using standard contrast dose in imaging of the thoracic aorta.

Methods: DECT with a 50% reduction in iodinated contrast was compared with SECT. For DECT, monoenergetic images at 50, 55, 60, 65, 68, 70, and 74 keV were reconstructed with adaptive statistical iterative reconstruction (ASiR-V) of 50% and 80%. Objective image quality parameters included intravascular attenuation (HU), image noise (SD), contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). Two independent radiologists subjectively assessed the image quality for the 55 and 68 keV DECT reconstructions and SECT on a five-point Likert scale.

Results: Across 14 patients, the intravascular attenuation at 50-55 keV was comparable to SECT (p > 0.05). The CNRs were significantly lower for DECT with ASIR-V 50% compared to SECT for all keV-values (p < 0.05 for all). For ASIR-V 80%, CNR was comparable to SECT at energies below 60 keV (p > 0.05). The subjective image quality was comparable between DECT and SECT independent of keV level.

Conclusion: This study indicates that a 50% reduction in iodinated contrast may result in adequate image quality using DECT with monoenergetic reconstructions at lower energy levels for the imaging of the thoracic aorta. The best image quality was obtained for ASiR-V 80% image reconstructions at 55 keV.

Implications of practice: Dual energy CT with a reduction in iodinated contrast may result in adequate image quality in imaging of the thoracic aorta. However, increased radiation dose may limit the use to patients in which a reduction in fluid and iodinated contrast volume may outweigh this risk.

Keywords: Computer tomography; Contrast media; Iodine; Monoenergetic images; Spectral imaging.